
Committer's Guide
The FreeBSD Documentation Project

Revision: 43184

Copyright © 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2009, 2010, 2011, 2012, 2013 The FreeBSD Documentation Project

FreeBSD is a registered trademark of the FreeBSD Foundation.

Coverity is a registered trademark; Coverity Extend, Coverity Prevent
and Coverity Prevent SQS are trademarks of Coverity, Inc.

IBM, AIX, OS/2, PowerPC, PS/2, S/390, and ThinkPad are trademarks
of International Business Machines Corporation in the United States,
other countries, or both.

Intel, Celeron, EtherExpress, i386, i486, Itanium, Pentium, and Xeon
are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

SPARC, SPARC64, and UltraSPARC are trademarks of SPARC Inter-
national, Inc in the United States and other countries. SPARC Inter-
national, Inc owns all of the SPARC trademarks and under licensing
agreements allows the proper use of these trademarks by its mem-
bers.

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those desig-
nations appear in this document, and the FreeBSD Project was aware
of the trademark claim, the designations have been followed by the
“™” or the “®” symbol.

2013-11-13 by hrs.

Abstract
This document provides information for the FreeBSD committer
community. All new committers should read this document before
they start, and existing committers are strongly encouraged to re-
view it from time to time.

Almost all FreeBSD developers have commit rights to one or more
repositories. However, a few developers do not, and some of the in-
formation here applies to them as well. (For instance, some people
only have rights to work with the Problem Report database). Please

http://svnweb.freebsd.org/doc?view=revision&revision=43184

Administrative Details

2

see Section 16, “Issues Specific to Developers Who Are Not Commit-
ters” for more information.

This document may also be of interest to members of the FreeBSD
community who want to learn more about how the project works.

Table of Contents
1. Administrative Details . 2
2. Commit Bit Types . 3
3. Subversion Primer . 4
4. Conventions and Traditions . 26
5. Commit Log Messages . 30
6. Preferred License for New Files . 33
7. Developer Relations . 35
8. If in doubt... 36
9. GNATS . 36
10. Who's Who . 37
11. SSH Quick-Start Guide . 39
12. Coverity® Availability for FreeBSD Committers . 40
13. The FreeBSD Committers' Big List of Rules . 40
14. Support for Multiple Architectures . 47
15. Ports Specific FAQ . 49
16. Issues Specific to Developers Who Are Not Committers . 57
17. Information About Google Analytics . 58
18. Perks of the Job . 59
19. Miscellaneous Questions . 59

1. Administrative Details

Login Methods ssh(1), protocol 2 only

Main Shell Host freefall.FreeBSD.org

src/ Subversion
Root

svn+ssh:// svn.FreeBSD.org /base (see also Section 3.2.3, “RE-
LENG_* Branches and General Layout”).

doc/ Subversion
Root

svn+ssh:// svn.FreeBSD.org /doc (see also Section 3.2.4, “FreeBSD
Documentation Project Branches and Layout”).

ports/ Subver-
sion Root

svn+ssh:// svn.FreeBSD.org /ports (see also Section 3.2.5, “Free-
BSD Ports Tree Branches and Layout”).

Internal Mailing
Lists

developers (technically called all-developers), doc-developers, doc-
committers, ports-developers, ports-committers, src-developers, src-
committers. (Each project repository has its own -developers
and -committers mailing lists. Archives for these lists may be

http://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1

Committer's Guide

3

found in files /home/mail/repository-name-developers-archive
and /home/mail/repository-name-committers-archive on the
FreeBSD.org cluster.)

Core Team month-
ly reports

/home/core/public/monthly-reports on the FreeBSD.org cluster.

Ports Manage-
ment Team
monthly reports

/home/portmgr/public/monthly-reports on the FreeBSD.org clus-
ter.

Noteworthy src/
SVN Branches

stable/8 (8.X-STABLE), stable/9 (9.X-STABLE), stable/10 (10.X-
STABLE), head (-CURRENT)

ssh(1) is required to connect to the project hosts. For more information, see Section 11,
“SSH Quick-Start Guide”.

Useful links:

• FreeBSD Project Internal Pages

• FreeBSD Project Hosts

• FreeBSD Project Administrative Groups

2. Commit Bit Types
The FreeBSD repository has a number of components which, when combined, support the
basic operating system source, documentation, third party application ports infrastruc-
ture, and various maintained utilities. When FreeBSD commit bits are allocated, the areas
of the tree where the bit may be used are specified. Generally, the areas associated with
a bit reflect who authorized the allocation of the commit bit. Additional areas of author-
ity may be added at a later date: when this occurs, the committer should follow normal
commit bit allocation procedures for that area of the tree, seeking approval from the ap-
propriate entity and possibly getting a mentor for that area for some period of time.

Committer Type Responsible Tree Components

src core@ src/, doc/ subject to appro-
priate review

doc doceng@ doc/, src/ documentation

ports portmgr@ ports/

Commit bits allocated prior to the development of the notion of areas of authority may
be appropriate for use in many parts of the tree. However, common sense dictates that
a committer who has not previously worked in an area of the tree seek review prior to
committing, seek approval from the appropriate responsible party, and/or work with a

http://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1
http://www.FreeBSD.org/internal/
http://www.FreeBSD.org/internal/machines.html
http://www.FreeBSD.org/administration.html

Policy for doc/ Committer Activity in
src/

4

mentor. Since the rules regarding code maintenance differ by area of the tree, this is as
much for the benefit of the committer working in an area of less familiarity as it is for
others working on the tree.

Committers are encouraged to seek review for their work as part of the normal develop-
ment process, regardless of the area of the tree where the work is occurring.

2.1. Policy for doc/ Committer Activity in src/

• doc committers may commit documentation changes to src files, such as man pages,
READMEs, fortune databases, calendar files, and comment fixes without approval from
a src committer, subject to the normal care and tending of commits.

• doc committers may commit minor src changes and fixes, such as build fixes, small
features, etc, with an "Approved by" from a src committer.

• doc committers may seek an upgrade to a src commit bit by acquiring a mentor, who
will propose the doc committer to core. When approved, they will be added to 'access'
and the normal mentoring period will ensue, which will involve a continuing of “Ap-
proved by” for some period.

• "Approved by" is only acceptable from non-mentored src committers -- mentored com-
mitters can provide a "Reviewed by" but not an "Approved by".

3. Subversion Primer
It is assumed that you are already familiar with the basic operation of the version control
systems in use. Traditionally this was CVS. Subversion is used for the src tree as of May
2008, the doc/www tree as of May 2012 and the ports tree as of July 2012.

There is a list of things missing in Subversion when compared to CVS. The notes at
http://people.freebsd.org/~peter/svn_notes.txt might also be useful.

3.1. Introduction

The FreeBSD source repository switched from CVS to Subversion on May 31st, 2008. The
first real SVN commit is r179447.

The FreeBSD doc/www repository switched from CVS to Subversion on May 19th, 2012.
The first real SVN commit is r38821.

Note
Part of the doc/www CVS to SVN conversion included an infrastruc-
tural change to the build process. The most notable change is the

http://wiki.freebsd.org/SubversionMissing
http://people.freebsd.org/~peter/svn_notes.txt

Committer's Guide

5

location of the FreeBSD website www tree, which has been moved
from www/lang/ to head/lang/htdocs/ .

The FreeBSD ports repository switched from CVS to Subversion on July 14th, 2012. The
first real SVN commit is r300894.

There are mechanisms in place to automatically merge changes back from the Subversion
src repository to the CVS repository for some FreeBSD branches (releng/6 through re-
leng/9), however this is purely to support pre-existing end-user installs and should not
be relied upon, recommended or advertised. Future branches will not be exported to CVS
at all. The ports repository was exported to CVS for a period of time to aid end user mi-
gration, but as of 28th February 2013 is no longer exported.

Subversion is not that different from CVS when it comes to daily use, but there are dif-
ferences. Subversion has a number of features that should make developers' lives easier.
The most important advantage to Subversion (and the reason why FreeBSD switched) is
that it handles branches and merging much better than CVS does. Some of the principal
differences are:

• Commits are atomic.

• Revision numbers apply across the repository—all files that were modified in the same
commit have the same revision number.

• Branching and tagging are namespace operations.

• Directories are versioned.

• Files and directories can have arbitrary, versioned metadata attached to them.

• Files and directories can be copied, with full history tracking.

• No more contortions due to CVS weakness such as applying patch(1) files at compile
time in order to avoid touching vendor branch code.

• No more repo-copies.

Subversion can be installed from the FreeBSD Ports Collection by issuing these com-
mands:

cd ­/usr/ports/devel/subversion
make clean install

3.2. Getting Started

There are a few ways to obtain a working copy of the tree from Subversion. This section
will explain them.

http://www.FreeBSD.org/cgi/man.cgi?query=patch&sektion=1

Getting Started

6

3.2.1. Direct Checkout

The first is to check out directly from the main repository. For the src tree, use:

% svn checkout svn+ssh://svn.freebsd.org/base/head ­/usr/src

For the doc tree, use:

% svn checkout svn+ssh://svn.freebsd.org/doc/head ­/usr/doc

For the ports tree, use:

% svn checkout svn+ssh://svn.freebsd.org/ports/head ­/usr/ports

Note

Though the remaining examples in this document are written with
the workflow of working with the src tree in mind, the underlying
concepts are the same for working with the doc and the ports tree.
Ports related Subversion operations are listed in Section 15, “Ports
Specific FAQ”.

The above command will check out a CURRENT source tree as /usr/src/ , which can be any
target directory on the local filesystem. Omitting the final argument of that command
causes the working copy, in this case, to be named “head”, but that can be renamed safely.

svn+ssh means the SVN protocol tunnelled over SSH. The name of the server is
svn.freebsd.org , base is the path to the repository, and head is the subdirectory within
the repository.

If your FreeBSD login name is different from your login name on your local machine, you
must either include it in the URL (for example svn+ssh://jarjar@svn.freebsd.org/
base/head), or add an entry to your ~/.ssh/config in the form:

Host svn.freebsd.org
 User jarjar

This is the simplest method, but it's hard to tell just yet how much load it will place on
the repository. Subversion is much faster than CVS, however.

Committer's Guide

7

Note
The svn diff does not require access to the server as SVN stores
a reference copy of every file in the working copy. This, however,
means that Subversion working copies are very large in size.

3.2.2. Checkout from a Mirror

Check out a working copy from a mirror by substituting the mirror's URL for svn+ssh://
svn.freebsd.org/base . This can be an official mirror or a mirror maintained by using
svnsync.

There is a serious disadvantage to this method: every time something is to be committed,
a svn relocate to the master repository has to be done, remembering to svn relocate
back to the mirror after the commit. Also, since svn relocate only works between repos-
itories that have the same UUID, some hacking of the local repository's UUID has to occur
before it is possible to start using it.

Unlike with CVS, the hassle of a local svnsync mirror probably is not worth it unless the
network connectivity situation or other factors demand it. If it is needed, see the end of
this chapter for information on how to set one up.

3.2.3. RELENG_* Branches and General Layout

In svn+ssh://svn.freebsd.org/base , base refers to the source tree. Similarly, ports
refers to the ports tree, and so on. These are separate repositories with their own change
number sequences, access controls and commit mail.

For the base repository, HEAD refers to the -CURRENT tree. For example, head/bin/ls is
what would go into /usr/src/bin/ls in a release. Some key locations are:

• /head/ which corresponds to HEAD, also known as -CURRENT.

• /stable/n which corresponds to RELENG_n .

• /releng/n.n which corresponds to RELENG_n_n .

• /release/n.n.n which corresponds to RELENG_n_n_n_RELEASE .

• /vendor* is the vendor branch import work area. This directory itself does not contain
branches, however its subdirectories do. This contrasts with the stable, releng and release
directories.

• /projects and /user feature a branch work area, like in Perforce. As above, the /user di-
rectory does not contain branches itself.

Daily Use

8

3.2.4. FreeBSD Documentation Project Branches and Layout

In svn+ssh://svn.freebsd.org/doc , doc refers to the repository root of the source tree.

In general, most FreeBSD Documentation Project work will be done within the head/
branch of the documentation source tree.

FreeBSD documentation is written and/or translated to various languages, each in a sep-
arate directory in the head/ branch.

Each translation set contains several subdirectories for the various parts of the FreeBSD
Documentation Project. A few noteworthy directories are:

• /articles/ contains the source code for articles written by various FreeBSD contributors.

• /books/ contains the source code for the different books, such as the FreeBSD Handbook.

• /htdocs/ contains the source code for the FreeBSD website.

3.2.5. FreeBSD Ports Tree Branches and Layout

In svn+ssh://svn.freebsd.org/ports , ports refers to the repository root of the ports
tree.

In general, most FreeBSD port work will be done within the head/ branch of the ports
tree which is the actual ports tree used to install software. Some other key locations are:

• /branches/RELENG_n_n_n which corresponds to RELENG_n_n_n is used to merge back
security updates in preparation for a release.

• /tags/RELEASE_n_n_n which corresponds to RELEASE_n_n_n represents a release tag of
the ports tree.

• /tags/RELEASE_n_EOL represents the end of life tag of a specific FreeBSD branch.

3.3. Daily Use

This section will explain how to perform common day-to-day operations with Subversion.

3.3.1. Help

SVN has built in help documentation. It can be accessed by typing the following command:

% svn help

Additional information can be found in the Subversion Book.

3.3.2. Checkout

As seen earlier, to check out the FreeBSD head branch:

http://svnbook.red-bean.com/

Committer's Guide

9

% svn checkout svn+ssh://svn.freebsd.org/base/head ­/usr/src

At some point, more than just HEAD will probably be useful, for instance when merging
changes to stable/7. Therefore, it may be useful to have a partial checkout of the complete
tree (a full checkout would be very painful).

To do this, first check out the root of the repository:

% svn checkout ­--depth=immediates svn+ssh://svn.freebsd.org/base

This will give base with all the files it contains (at the time of writing, just ROADMAP.txt)
and empty subdirectories for head, stable, vendor and so on.

Expanding the working copy is possible. Just change the depth of the various subdirec-
tories:

% svn up ­--set-depth=infinity base/head
% svn up ­--set-depth=immediates base/release base/releng base/stable

The above command will pull down a full copy of head, plus empty copies of every release
tag, every releng branch, and every stable branch.

If at a later date merging to 7-STABLE is required, expand the working copy:

% svn up ­--set-depth=infinity base/stable/7

Subtrees do not have to be expanded completely. For instance, expanding only sta-
ble/7/sys and then later expand the rest of stable/7:

% svn up ­--set-depth=infinity base/stable/7/sys
% svn up ­--set-depth=infinity base/stable/7

Updating the tree with svn update will only update what was previously asked for (in
this case, head and stable/7; it will not pull down the whole tree.

Note
Decreasing the depth of a working copy is not possible.

3.3.3. Anonymous Checkout

It is possible to anonymously check out the FreeBSD repository with Subversion. This will
give access to a read-only tree that can be updated, but not committed back to the main
repository. To do this, use the following command:

Daily Use

10

% svn co https://svn0.us-west.FreeBSD.org/base/head ­/usr/src

Select the closest mirror and verify the mirror server certificate from the list of Subver-
sion mirror sites.

3.3.4. Updating the Tree

To update a working copy to either the latest revision, or a specific revision:

% svn update
% svn update ­-r12345

3.3.5. Status

To view the local changes that have been made to the working copy:

% svn status

To show local changes and files that are out-of-date do:

% svn status ­--show-updates

3.3.6. Editing and Committing

Unlike Perforce, SVN does not need to be told in advance about file editing.

svn commit works like the equivalent CVS command. To commit all changes in the current
directory and all subdirectories:

% svn commit

To commit all changes in, for example, lib/libfetch/ and usr/bin/fetch/ in a single
operation:

% svn commit lib/libfetch usr/bin/fetch

There is also a commit wrapper for the ports tree to handle the properties and sanity
checking your changes:

% /usr/ports/Tools/scripts/psvn commit

3.3.7. Adding and Removing Files

Note
Before adding files, get a copy of auto-props.txt (there is also a ports
tree specific version) and add it to ~/.subversion/config accord-

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/svn-mirrors.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/svn-mirrors.html
http://people.freebsd.org/~peter/auto-props.txt
http://people.freebsd.org/~beat/cvs2svn/auto-props.txt
http://people.freebsd.org/~beat/cvs2svn/auto-props.txt

Committer's Guide

11

ing to the instructions in the file. If you added something before
reading this, use svn rm --keep-local for just added files, fix your
config file and re-add them again. The initial config file is created
when you first run a svn command, even something as simple as
svn help .

Files are added to a SVN repository with svn add . To add a file named foo, edit it, then:

% svn add foo

Note
Most new source files should include a $FreeBSD$ string near the
start of the file. On commit, svn will expand the $FreeBSD$ string,
adding the file path, revision number, date and time of commit, and
the username of the committer. Files which cannot be modified may
be committed without the $FreeBSD$ string.

Files can be removed with svn remove:

% svn remove foo

Subversion does not require deleting the file before using svn rm, and indeed complains
if that happens.

It is possible to add directories with svn add :

% mkdir bar
% svn add bar

Although svn mkdir makes this easier by combining the creation of the directory and
the adding of it:

% svn mkdir bar

Like files, directories are removed with svn rm. There is no separate command specifically
for removing directories.

% svn rm bar

3.3.8. Copying and Moving Files

This command creates a copy of foo.c named bar.c , with the new file also under version
control:

Daily Use

12

% svn copy foo.c bar.c

The example above is equivalent to:

% cp foo.c bar.c
% svn add bar.c

To move and rename a file:

% svn move foo.c bar.c

3.3.9. Log and Annotate

svn log shows revisions and commit messages, most recent first, for files or directories.
When used on a directory, all revisions that affected the directory and files within that
directory are shown.

svn annotate, or equally svn praise or svn blame , shows the most recent revision
number and who committed that revision for each line of a file.

3.3.10. Diffs

svn diff displays changes to the working copy. Diffs generated by SVN are unified and
include new files by default in the diff output.

svn diff can show the changes between two revisions of the same file:

% svn diff ­-r179453:179454 ROADMAP.txt

It can also show all changes for a specific changeset. The following will show what changes
were made to the current directory and all subdirectories in changeset 179454:

% svn diff ­-c179454 ­.

3.3.11. Reverting

Local changes (including additions and deletions) can be reverted using svn revert. It
does not update out-of-date files, but just replaces them with pristine copies of the orig-
inal version.

3.3.12. Conflicts

If an svn update resulted in a merge conflict, Subversion will remember which files have
conflicts and refuse to commit any changes to those files until explicitly told that the
conflicts have been resolved. The simple, not yet deprecated procedure is the following:

% svn resolved foo

Committer's Guide

13

However, the preferred procedure is:

% svn resolve ­--accept=working foo

The two examples are equivalent. Possible values for --accept are:

• working: use the version in your working directory (which one presumes has been edit-
ed to resolve the conflicts).

• base: use a pristine copy of the version you had before svn update, discarding your
own changes, the conflicting changes, and possibly other intervening changes as well.

• mine-full : use what you had before svn update, including your own changes, but
discarding the conflicting changes, and possibly other intervening changes as well.

• theirs-full : use the version that was retrieved when you did svn update, discarding
your own changes.

3.4. Advanced Use

3.4.1. Sparse Checkouts

SVN allows sparse, or partial checkouts of a directory by adding --depth to a svn check-
out.

Valid arguments to --depth are:

• empty: the directory itself without any of its contents.

• files : the directory and any files it contains.

• immediates: the directory and any files and directories it contains, but none of the
subdirectories' contents.

• infinity: anything.

The --depth option applies to many other commands, including svn commit, svn revert,
and svn diff .

Since --depth is sticky, there is a --set-depth option for svn update that will change
the selected depth. Thus, given the working copy produced by the previous example:

% cd ~/freebsd
% svn update ­--set-depth=immediates ­.

The above command will populate the working copy in ~/freebsd with ROADMAP.txt
and empty subdirectories, and nothing will happen when svn update is executed on the

Advanced Use

14

subdirectories. However, the following command will set the depth for head (in this case)
to infinity, and fully populate it:

% svn update ­--set-depth=infinity head

3.4.2. Direct Operation

Certain operations can be performed directly on the repository without touching the
working copy. Specifically, this applies to any operation that does not require editing a
file, including:

• log, diff

• mkdir

• remove, copy, rename

• propset , propedit, propdel

• merge

Branching is very fast. The following command would be used to branch RELENG_8:

% svn copy svn+ssh://svn.freebsd.org/base/head svn+ssh://
svn.freebsd.org/base/stable/8

This is equivalent to the following set of commands which take minutes and hours as
opposed to seconds, depending on your network connection:

% svn checkout ­--depth=immediates svn+ssh://svn.freebsd.org/base
% cd base
% svn update ­--depth=infinity head
% svn copy head stable/8
% svn commit stable/8

3.4.3. Merging with SVN

This section deals with merging code from one branch to another (typically, from head
to a stable branch).

Note

In all examples below, $FSVN refers to the location of the FreeBSD
Subversion repository, svn+ssh://svn.freebsd.org/base/ .

Committer's Guide

15

3.4.3.1. About Merge Tracking

From the user's perspective, merge tracking information (or mergeinfo) is stored in a
property called svn:mergeinfo , which is a comma-separated list of revisions and ranges
of revisions that have been merged. When set on a file, it applies only to that file. When
set on a directory, it applies to that directory and its descendants (files and directories)
except for those that have their own svn:mergeinfo .

It is not inherited. For instance, stable/6/contrib/openpam/ does not implicitly inherit
mergeinfo from stable/6/, or stable/6/contrib/. Doing so would make partial check-
outs very hard to manage. Instead, mergeinfo is explicitly propagated down the tree. For
merging something into branch/foo/bar/ , the following rules apply:

1. If branch/foo/bar/ does not already have a mergeinfo record, but a direct ances-
tor (for instance, branch/foo/) does, then that record will be propagated down to
branch/foo/bar/ before information about the current merge is recorded.

2. Information about the current merge will not be propagated back up that ancestor.

3. If a direct descendant of branch/foo/bar/ (for instance, branch/foo/bar/baz/) al-
ready has a mergeinfo record, information about the current merge will be propagated
down to it.

If you consider the case where a revision changes several separate parts of the tree (for
example, branch/foo/bar/ and branch/foo/quux/), but you only want to merge some
of it (for example, branch/foo/bar/), you will see that these rules make sense. If merge-
info was propagated up, it would seem like that revision had also been merged to branch/
foo/quux/ , when in fact it had not been.

3.4.3.2. Selecting the Source and Target

Because of mergeinfo propagation, it is important to choose the source and target for the
merge carefully to minimise property changes on unrelated directories.

The rules for selecting the merge target (the directory that you will merge the changes
to) can be summarized as follows:

1. Never merge directly to a file.

2. Never, ever merge directly to a file.

3. Never, ever, ever merge directly to a file.

4. Changes to kernel code should be merged to sys/. For instance, a change to the ich-
wd(4) driver should be merged to sys/, not sys/dev/ichwd/ . Likewise, a change to the
TCP/IP stack should be merged to sys/, not sys/netinet/ .

5. Changes to code under etc/ should be merged at etc/, not below it.

http://www.FreeBSD.org/cgi/man.cgi?query=ichwd&sektion=4
http://www.FreeBSD.org/cgi/man.cgi?query=ichwd&sektion=4

Advanced Use

16

6. Changes to vendor code (code in contrib/, crypto/ and so on) should be merged to the
directory where vendor imports happen. For instance, a change to crypto/openssl/
util/ should be merged to crypto/openssl/ . This is rarely an issue, however, since
changes to vendor code are usually merged wholesale.

7. Changes to userland programs should as a general rule be merged to the directory that
contains the Makefile for that program. For instance, a change to usr.bin/xlint/
arch/i386/ should be merged to usr.bin/xlint/ .

8. Changes to userland libraries should as a general rule be merged to the directory that
contains the Makefile for that library. For instance, a change to lib/libc/gen/ should
be merged to lib/libc/ .

9. There may be cases where it makes sense to deviate from the rules for userland pro-
grams and libraries. For instance, everything under lib/libpam/ is merged to lib/
libpam/, even though the library itself and all of the modules each have their own
Makefile.

10.Changes to manual pages should be merged to share/man/manN/ , for the appropriate
value of N.

11.Other changes to share/ should be merged to the appropriate subdirectory and not
to share/ directly.

12.Changes to a top-level file in the source tree such as UPDATING or Makefile.inc1
should be merged directly to that file rather than to the root of the whole tree. Yes,
this is an exception to the first three rules.

13.When in doubt, ask.

If you need to merge changes to several places at once (for instance, changing a kernel
interface and every userland program that uses it), merge each target separately, then
commit them together. For instance, if you merge a revision that changed a kernel API
and updated all the userland bits that used that API, you would merge the kernel change
to sys, and the userland bits to the appropriate userland directories, then commit all of
these in one go.

The source will almost invariably be the same as the target. For instance, you will al-
ways merge stable/7/lib/libc/ from head/lib/libc/ . The only exception would be
when merging changes to code that has moved in the source branch but not in the parent
branch. For instance, a change to pkill(1) would be merged from bin/pkill/ in head to
usr.bin/pkill/ in stable/7.

3.4.3.3. Preparing the Merge Target

Because of the mergeinfo propagation issues described earlier, it is very important that
you never merge changes into a sparse working copy. You must always have a full check-

http://www.FreeBSD.org/cgi/man.cgi?query=pkill&sektion=1

Committer's Guide

17

out of the branch you will merge into. For instance, when merging from HEAD to 7, you
must have a full checkout of stable/7:

% cd stable/7
% svn up ­--set-depth=infinity

The target directory must also be up-to-date and must not contain any uncommitted
changes or stray files.

3.4.3.4. Identifying Revisions

Identifying revisions to be merged is a must. If the target already has complete mergeinfo,
ask SVN for a list:

% cd stable/6/contrib/openpam
% svn mergeinfo ­--show-revs=eligible $FSVN/head/contrib/openpam

If the target does not have complete mergeinfo, check the log for the merge source.

3.4.3.5. Merging

Now, let us start merging!

3.4.3.5.1. The Principles

Say you would like to merge:

• revision $R

• in directory $target in stable branch $B

• from directory $source in head

• $FSVN is svn+ssh://svn.freebsd.org/base

Assuming that revisions $P and $Q have already been merged, and that the current direc-
tory is an up-to-date working copy of stable/$B, the existing mergeinfo looks like this:

% svn propget svn:mergeinfo ­-R $target
$target ­- ­/head/$source:$P,$Q

Merging is done like so:

% svn merge ­-c$R $FSVN/head/$source $target

Checking the results of this is possible with svn diff .

The svn:mergeinfo now looks like:

% svn propget svn:mergeinfo ­-R $target

Advanced Use

18

$target ­- head/$source:$P,$Q,$R

If the results are not exactly as shown, assistance may be required before committing
as mistakes may have been made, or there may be something wrong with the existing
mergeinfo, or there may be a bug in Subversion.

3.4.3.5.2. Practical Example

As a practical example, consider the following scenario: The changes to netmap.4 in
r238987 is to be merged from CURRENT to 9-STABLE. The file resides in head/share/
man/man4 and according to Section 3.4.3, “Merging with SVN” this is also where to do the
merge. Note that in this example all paths are relative to the top of the svn repository.
For more information on the directory layout, see Section 3.2.3, “RELENG_* Branches and
General Layout”.

The first step is to inspect the existing mergeinfo.

% svn propget svn:mergeinfo ­-R stable/9/share/man/man4

Take a quick note of how it looks before moving on to the next step; doing the actual
merge:

% svn merge ­-c r238987 svn+ssh://svn.freebsd.org/base/head/share/man/
man4 stable/9/share/man/man4
--- Merging r238987 into ­'stable/9/share/man/man4':
U stable/9/share/man/man4/netmap.4
--- Recording mergeinfo for merge of r238987 into
'stable/9/share/man/man4':
 U stable/9/share/man/man4

Check that the revision number of the merged revision has been added. Once this is ver-
ified, the only thing left is the actual commit.

% svn commit stable/9/share/man/man4

3.4.3.5.3. Merging into the Kernel (sys/)

As stated above, merging into the kernel is different from merging in the rest of the tree.
In many ways merging to the kernel is simpler because there is always the same merge
target (sys/).

Once svn merge has been executed, svn diff has to be run on the directory to check the
changes. This may show some unrelated property changes, but these can be ignored. Next,
build and test the kernel, and, once the tests are complete, commit the code as normal,
making sure that the commit message starts with “Merge r226222 from head”, or similar.

3.4.3.6. Precautions Before Committing

As always, build world (or appropriate parts of it).

Committer's Guide

19

Check the changes with svn diff and svn stat . Make sure all the files that should have
been added or deleted were in fact added or deleted.

Take a closer look at any property change (marked by a M in the second column of svn
stat). Normally, no svn:mergeinfo properties should be anywhere except the target di-
rectory (or directories).

If something looks fishy, ask for help.

3.4.3.7. Committing

Make sure to commit a top level directory to have the mergeinfo included as well. Do not
specify individual files on the command line. For more information about committing
files in general, see the relevant section of this primer.

3.4.4. Vendor Imports with SVN

Important
Please read this entire section before starting a vendor import.

Note
Patches to vendor code fall into two categories:

• Vendor patches: these are patches that have been issued by the
vendor, or that have been extracted from the vendor's version
control system, which address issues which in your opinion can-
not wait until the next vendor release.

• FreeBSD patches: these are patches that modify the vendor code
to address FreeBSD-specific issues.

The nature of a patch dictates where it should be committed:

• Vendor patches should be committed to the vendor branch, and
merged from there to head. If the patch addresses an issue in a
new release that is currently being imported, it must not be com-
mitted along with the new release: the release must be imported
and tagged first, then the patch can be applied and committed.
There is no need to re-tag the vendor sources after committing
the patch.

Advanced Use

20

• FreeBSD patches should be committed directly to head.

3.4.4.1. Preparing the Tree
If importing for the first time after the switch to Subversion, flattening and cleaning up
the vendor tree is necessary, as well as bootstrapping the merge history in the main tree.

3.4.4.1.1. Flattening

During the conversion from CVS to Subversion, vendor branches were imported with the
same layout as the main tree. This means that the pf vendor sources ended up in ven-
dor/pf/dist/contrib/pf . The vendor source is best directly in vendor/pf/dist .

To flatten the pf tree:

% cd vendor/pf/dist/contrib/pf
% svn mv $(svn list) ­../..
% cd ­../..
% svn rm contrib
% svn propdel ­-R svn:mergeinfo ­.
% svn commit

The propdel bit is necessary because starting with 1.5, Subversion will automatically add
svn:mergeinfo to any directory that is copied or moved. In this case, as nothing is being
merged from the deleted tree, they just get in the way.

Tags may be flattened as well (3, 4, 3.5 etc.); the procedure is exactly the same, only chang-
ing dist to 3.5 or similar, and putting the svn commit off until the end of the process.

3.4.4.1.2. Cleaning Up

The dist tree can be cleaned up as necessary. Disabling keyword expansion is recom-
mended, as it makes no sense on unmodified vendor code and in some cases it can even
be harmful. OpenSSH, for example, includes two files that originated with FreeBSD and
still contain the original version tags. To do this:

% svn propdel svn:keywords ­-R ­.
% svn commit

3.4.4.1.3. Bootstrapping Merge History

If importing for the first time after the switch to Subversion, bootstrap svn:mergeinfo
on the target directory in the main tree to the revision that corresponds to the last related
change to the vendor tree, prior to importing new sources:

% cd head/contrib/pf
% svn merge ­--record-only svn+ssh://svn.freebsd.org/base/vendor/pf/
dist@180876 ­.
% svn commit

Committer's Guide

21

3.4.4.2. Importing New Sources

With two commits—one for the import itself and one for the tag—this step can optionally
be repeated for every upstream release between the last import and the current import.

3.4.4.2.1. Preparing the Vendor Sources

Unlike in CVS where only the needed parts were imported into the vendor tree to avoid
bloating the main tree, Subversion is able to store a full distribution in the vendor tree.
So, import everything, but merge only what is required.

A svn add is required to add any files that were added since the last vendor import,
and svn rm is required to remove any that were removed since. Preparing sorted lists
of the contents of the vendor tree and of the sources that are about to be imported is
recommended, to facilitate the process.

% cd vendor/pf/dist
% svn list ­-R ­| grep ­-v ­'/$' ­| sort >../old
% cd ­../pf-4.3
% find ­. ­-type f ­| cut ­-c 3- ­| sort >../new

With these two files, comm -23 ../old ../new will list removed files (files only in old),
while comm -13 ../old ../new will list added files only in new.

3.4.4.2.2. Importing into the Vendor Tree

Now, the sources must be copied into dist and the svn add and svn rm commands should
be used as needed:

% cd vendor/pf/pf-4.3
% tar cf ­- ­. ­| tar xf ­- ­-C ­../dist
% cd ­../dist
% comm ­-23 ­../old ­../new ­| xargs svn rm
% comm ­-13 ­../old ­../new ­| xargs svn ­--parents add

If any directories were removed, they will have to be svn rmed manually. Nothing will
break if they are not, but they will remain in the tree.

Check properties on any new files. All text files should have svn:eol-style set to native.
All binary files should have svn:mime-type set to application/octet-stream unless
there is a more appropriate media type. Executable files should have svn:executable
set to *. No other properties should exist on any file in the tree.

Committing is now possible, however it is good practice to make sure that everything is
OK by using the svn stat and svn diff commands.

3.4.4.2.3. Tagging

Once committed, vendor releases should be tagged for future reference. The best and
quickest way to do this is directly in the repository:

Advanced Use

22

% svn cp svn+ssh://svn.freebsd.org/base/vendor/pf/dist svn+ssh://
svn.freebsd.org/base/vendor/pf/4.3

Once that is complete, svn up the working copy of vendor/pf to get the new tag, although
this is rarely needed.

If creating the tag in the working copy of the tree, svn:mergeinfo results must be re-
moved:

% cd vendor/pf
% svn cp dist 4.3
% svn propdel svn:mergeinfo ­-R 4.3

3.4.4.3. Merging to Head

% cd head/contrib/pf
% svn up
% svn merge ­--accept=postpone svn+ssh://svn.freebsd.org/base/vendor/
pf/dist ­.

The --accept=postpone tells Subversion that it should not complain because merge con-
flicts will be taken care of manually.

It is necessary to resolve any merge conflicts. This process is the same in SVN as in CVS.

Make sure that any files that were added or removed in the vendor tree have been prop-
erly added or removed in the main tree. To check diffs against the vendor branch:

% svn diff ­--no-diff-deleted ­--old=svn+ssh://svn.freebsd.org/base/
vendor/pf/dist ­--new=.

The --no-diff-deleted tells Subversion not to complain about files that are in the ven-
dor tree but not in the main tree, i.e., things that would have previously been removed
before the vendor import, like for example the vendor's makefiles and configure scripts.

Using CVS, once a file was off the vendor branch, it was not able to be put back. With
Subversion, there is no concept of on or off the vendor branch. If a file that previously
had local modifications, to make it not show up in diffs in the vendor tree, all that has to
be done is remove any left-over cruft like FreeBSD version tags, which is much easier.

If any changes are required for the world to build with the new sources, make them now,
and keep testing until everything builds and runs perfectly.

3.4.4.4. Committing the Vendor Import

Committing is now possible! Everything must be committed in one go. If done properly,
the tree will move from a consistent state with old code, to a consistent state with new
code.

Committer's Guide

23

3.4.4.5. From Scratch

3.4.4.5.1. Importing into the Vendor Tree

This section is an example of importing and tagging byacc into head.

First, prepare the directory in vendor:

% svn co ­--depth immediates $FSVN/vendor
% cd vendor
% svn mkdir byacc
% svn mkdir byacc/dist

Now, import the sources into the dist directory. Once the files are in place, svn add the
new ones, then svn commit and tag the imported version. To save time and bandwidth,
direct remote committing and tagging is possible:

% svn cp ­-m ­"Tag byacc 20120115" $FSVN/vendor/byacc/dist $FSVN/
vendor/byacc/20120115

3.4.4.5.2. Merging to head

Due to this being a new file, copy it for the merge:

% svn cp ­-m ­"Import byacc to contrib" $FSVN/vendor/byacc/dist $FSVN/
head/contrib/byacc

Working normally on newly imported sources is still possible.

3.4.5. Reverting a Commit

Reverting a commit to a previous version is fairly easy:

% svn merge ­-r179454:179453 ROADMAP.txt
% svn commit

Change number syntax, with negative meaning a reverse change, can also be used:

% svn merge ­-c ­-179454 ROADMAP.txt
% svn commit

This can also be done directly in the repository:

% svn merge ­-r179454:179453 svn+ssh://svn.freebsd.org/base/
ROADMAP.txt

Advanced Use

24

Note

It is important to ensure that the mergeinfo is correct when revert-
ing a file in order to permit svn mergeinfo --eligible to work
as expected.

Reverting the deletion of a file is slightly different. Copying the version of the file that
predates the deletion is required. For example, to restore a file that was deleted in revision
N, restore version N-1:

% svn copy svn+ssh://svn.freebsd.org/base/ROADMAP.txt@179454
% svn commit

or, equally:

% svn copy svn+ssh://svn.freebsd.org/base/ROADMAP.txt@179454 svn
+ssh://svn.freebsd.org/base

Do not simply recreate the file manually and svn add it—this will cause history to be lost.

3.4.6. Fixing Mistakes

While we can do surgery in an emergency, do not plan on having mistakes fixed behind
the scenes. Plan on mistakes remaining in the logs forever. Be sure to check the output
of svn status and svn diff before committing.

Mistakes will happen but, they can generally be fixed without disruption.

Take a case of adding a file in the wrong location. The right thing to do is to svn move the
file to the correct location and commit. This causes just a couple of lines of metadata in
the repository journal, and the logs are all linked up correctly.

The wrong thing to do is to delete the file and then svn add an independent copy in the
correct location. Instead of a couple of lines of text, the repository journal grows an entire
new copy of the file. This is a waste.

3.4.7. Setting up a svnsync Mirror

You probably do not want to do this unless there is a good reason for it. Such reasons
might be to support many multiple local read-only client machines, or if your network
bandwidth is limited. Starting a fresh mirror from empty would take a very long time.
Expect a minimum of 10 hours for high speed connectivity. If you have international links,
expect this to take 4 to 10 times longer.

Committer's Guide

25

A far better option is to grab a seed file. It is large (~1GB) but will consume less network
traffic and take less time to fetch than a svnsync will. This is possible in one of the fol-
lowing three ways:

% rsync ­-va ­--partial ­--progress freefall:/home/peter/svnmirror-
base-r179637.tbz2 ­.

% rsync ­-va ­--partial ­--progress rsync://repoman.freebsd.org:50873/
svnseed/svnmirror-base-r215629.tar.xz ­.

% fetch ftp://ftp.freebsd.org/pub/FreeBSD/development/subversion/
svnmirror-base-r221445.tar.xz

Once you have the file, extract it to somewhere like home/svnmirror/base/ . Then, update
it, so that it fetches changes since the last revision in the archive:

% svnsync sync file:///home/svnmirror/base

You can then set that up to run from cron(8), do checkouts locally, set up a svnserve server
for your local machines to talk to, etc.

The seed mirror is set to fetch from svn://svn.freebsd.org/base . The configuration
for the mirror is stored in revprop 0 on the local mirror. To see the configuration, try:

% svn proplist ­-v ­--revprop ­-r 0 file:///home/svnmirror/base

Use propset to change things.

3.4.8. Committing High-ASCII Data

Files that have high-ASCII bits are considered binary files in SVN, so the pre-com-
mit checks fail and indicate that the mime-type property should be set to applica-
tion/octet-stream . However, the use of this is discouraged, so please do not set it.
The best way is always avoiding high-ASCII data, so that it can be read everywhere with
any text editor but if it is not avoidable, instead of changing the mime-type, set the
fbsd:notbinary property with propset :

% svn propset fbsd:notbinary yes foo.data

3.4.9. Maintaining a Project Branch

A project branch is one that is synced to head (or another branch) is used to develop
a project then commit it back to head. In SVN, “dolphin” branching is used for this. A
“dolphin” branch is one that diverges for a while and is finally committed back to the
original branch. During development code migration in one direction (from head to the
branch only). No code is committed back to head until the end. Once you commit back
at the end, the branch is dead (although you can have a new branch with the same name
after you delete the branch if you want).

As per http://people.freebsd.org/~peter/svn_notes.txt, work that is intended to be
merged back into HEAD should be in base/projects/ . If you are doing work that is ben-

http://www.FreeBSD.org/cgi/man.cgi?query=cron&sektion=8
http://people.freebsd.org/~peter/svn_notes.txt

Some Tips

26

eficial to the FreeBSD community in some way but not intended to be merged directly
back into HEAD then the proper location is base/user/your-name/ . This page contains
further details.

To create a project branch:

% svn copy svn+ssh://svn.freebsd.org/base/head svn+ssh://
svn.freebsd.org/base/projects/spif

To merge changes from HEAD back into the project branch:

% cd copy_of_spif
% svn merge svn+ssh://svn.freebsd.org/base/head
% svn commit

It is important to resolve any merge conflicts before committing.

3.5. Some Tips

In commit logs etc., “rev 179872” should be spelled “r179872” as per convention.

Do not remove and re-add the same file in a single commit as this will break the CVS
exporter.

Speeding up svn is possible by adding the following to ~/.ssh/config :

Host *
ControlPath ~/.ssh/sockets/master-%l-%r@%h:%p
ControlMaster auto
ControlPersist yes

and then typing

mkdir ~/.ssh/sockets

Checking out a working copy with a stock Subversion client without FreeBSD-specific
patches (OPTIONS_SET=FREEBSD_TEMPLATE) will mean that $FreeBSD$ tags will not be
expanded. Once the correct version has been installed, trick Subversion into expanding
them like so:

% svn propdel ­-R svn:keywords ­.
% svn revert ­-R ­.

This will wipe out uncommitted patches.

4. Conventions and Traditions
As a new developer there are a number of things you should do first. The first set is specific
to committers only. (If you are not a committer, e.g., have GNATS-only access, then your
mentor needs to do these things for you.)

http://svnweb.freebsd.org/base/projects/GUIDELINES.txt

Committer's Guide

27

4.1. Guidelines for Committers

Note

The .ent, .xml, and .xml files listed below exist in the FreeBSD Doc-
umentation Project SVN repository at svn.FreeBSD.org/doc/ .

If you have been given commit rights to one or more of the repositories:

• Add your author entity to head/share/xml/authors.ent ; this should be done first
since an omission of this commit will cause the next commits to break the doc/ build.

This is a relatively easy task, but remains a good first test of your version control skills.

Important

New files that do not have the FreeBSD=%H svn:keywords prop-
erty will be rejected when attempting to commit them to the
repository. Be sure to read Section 3.3.7, “Adding and Removing
Files” regarding adding and removing files, in addition to ver-
ifying that ~/.subversion/config contains the necessary "au-
to-props" entries from auto-props.txt mentioned there.

Note

Do not forget to get mentor approval for these patches!

• Add yourself to the “Developers” section of the Contributors List (head/
en_US.ISO8859-1/articles/contributors/contrib.committers.xml) and remove
yourself from the “Additional Contributors” section (head/en_US.ISO8859-1/arti-
cles/contributors/contrib.additional.xml). Please note that entries are sorted
by last name.

• Add an entry for yourself to head/share/xml/news.xml . Look for the other entries
that look like “A new committer” and follow the format.

http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributors/index.html

Guidelines for Committers

28

• You should add your PGP or GnuPG key to head/share/pgpkeys (and if you do not have
a key, you should create one). Do not forget to commit the updated head/share/pgp-
keys/pgpkeys.ent and head/share/pgpkeys/pgpkeys-developers.xml . Please note
that entries are sorted by last name.

Dag-Erling C. Smørgrav <des@FreeBSD.org > has written a shell script (head/share/
pgpkeys/addkey.sh) to make this extremely simple. See the README file for more in-
formation.

Note

It is important to have an up-to-date PGP/GnuPG key in the
Handbook, since the key may be required for positive iden-
tification of a committer, e.g., by the FreeBSD Administra-
tors <admins@FreeBSD.org > for account recovery. A complete
keyring of FreeBSD.org users is available for download from
http://www.FreeBSD.org/doc/pgpkeyring.txt.

• Add an entry for yourself to src/share/misc/committers-repository.dot , where
repository is either doc, ports or src, depending on the commit privileges you obtained.

• Some people add an entry for themselves to ports/astro/xearth/files/
freebsd.committers.markers .

• Some people add an entry for themselves to src/usr.bin/calendar/calen-
dars/calendar.freebsd .

• If you already have an account at the FreeBSD wiki, make sure your mentor moves you
from the Contributors group to the Developers group. Otherwise, consider signing up
for an account so you can publish projects and ideas you are working on.

• Once you get access to the wiki, you may add yourself to the How We Got Here and Irc
Nicks pages.

• If you subscribe to svn-src-all, svn-ports-all or svn-doc-all, you will probably want
to unsubscribe to avoid receiving duplicate copies of commit messages and their fol-
lowups.

mailto:des@FreeBSD.org
http://svnweb.FreeBSD.org/doc/head/share/pgpkeys/README
mailto:admins@FreeBSD.org
http://www.FreeBSD.org/doc/pgpkeyring.txt
http://wiki.freebsd.org
http://wiki.freebsd.org/ContributorsGroup
http://wiki.freebsd.org/DevelopersGroup
http://wiki.freebsd.org/HowWeGotHere
http://wiki.freebsd.org/IrcNicks
http://wiki.freebsd.org/IrcNicks
http://lists.FreeBSD.org/mailman/listinfo/svn-src-all
http://lists.FreeBSD.org/mailman/listinfo/svn-ports-all
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-all

Committer's Guide

29

Note

All src commits should go to FreeBSD-CURRENT first before be-
ing merged to FreeBSD-STABLE. No major new features or high-risk
modifications should be made to the FreeBSD-STABLE branch.

4.2. Guidelines for Everyone

Whether or not you have commit rights:

• Introduce yourself to the other developers, otherwise no one will have any idea who
you are or what you are working on. You do not have to write a comprehensive biog-
raphy, just write a paragraph or two about who you are and what you plan to be work-
ing on as a developer in FreeBSD. (You should also mention who your mentor will be).
Email this to the FreeBSD developers mailing list and you will be on your way!

• Log into hub.FreeBSD.org and create a /var/forward/user (where user is your
username) file containing the e-mail address where you want mail addressed to
yourusername @FreeBSD.org to be forwarded. This includes all of the commit messages
as well as any other mail addressed to the FreeBSD committer's mailing list and the
FreeBSD developers mailing list. Really large mailboxes which have taken up perma-
nent residence on hub often get “accidentally” truncated without warning, so forward
it or read it and you will not lose it.

Due to the severe load dealing with SPAM places on the central mail servers that do
the mailing list processing the front-end server does do some basic checks and will
drop some messages based on these checks. At the moment proper DNS information
for the connecting host is the only check in place but that may change. Some peo-
ple blame these checks for bouncing valid email. If you want these checks turned off
for your email you can place a file named .spam_lover in your home directory on
freefall.FreeBSD.org to disable the checks for your email.

Note

If you are a developer but not a committer, you will not be sub-
scribed to the committers or developers mailing lists; the subscrip-
tions are derived from the access rights.

Mentors

30

4.3. Mentors

All new developers also have a mentor assigned to them for the first few months. Your
mentor is responsible for teaching you the rules and conventions of the project and guid-
ing your first steps in the developer community. Your mentor is also personally respon-
sible for your actions during this initial period.

For committers: until your mentor decides (and announces with a commit to mentors)
that you have learned the ropes and are ready to commit on your own, you should
not commit anything without first getting your mentor's review and approval, and you
should document that approval with an Approved by: line in the commit message.

5. Commit Log Messages
This section contains some suggestions and traditions for how commit logs are formatted.

As well as including an informative message with each commit you may need to include
some additional information.

This information consists of one or more lines containing the key word or phrase, a colon,
tabs for formatting, and then the additional information.

The key words or phrases are:

PR: The problem report (if any) which is affect-
ed (typically, by being closed) by this com-
mit. Only include one PR per line as the au-
tomated scripts which parse this line can
not understand more than one.

Submitted by: The name and e-mail address of the person
that submitted the fix; for developers, just
the username on the FreeBSD cluster.

If the submitter is the maintainer of the
port to which you are commiting include
"(maintainer)" after the email address.

Avoid obfuscating the email address of
the submitter as this adds additional work
when searching logs.

Reviewed by: The name and e-mail address of the person
or people that reviewed the change; for de-
velopers, just the username on the FreeBSD

Committer's Guide

31

cluster. If a patch was submitted to a mail-
ing list for review, and the review was fa-
vorable, then just include the list name.

Approved by: The name and e-mail address of the person
or people that approved the change; for de-
velopers, just the username on the FreeBSD
cluster. It is customary to get prior approval
for a commit if it is to an area of the tree
to which you do not usually commit. In ad-
dition, during the run up to a new release
all commits must be approved by the release
engineering team.

If these are your first commits then you
should have passed them past your mentor
first, and you should list your mentor, as in
``username-of-mentor (mentor)''.

If a team approved these commits then in-
clude the team name followed by the user-
name of the approver in parentheses. For
example: ``re@ (username)``

Obtained from: The name of the project (if any) from which
the code was obtained. Do not use this line
for the name of an individual person.

MFC after: If you wish to receive an e-mail reminder to
MFC at a later date, specify the number of
days, weeks, or months after which an MFC
is planned.

Security: If the change is related to a security vulner-
ability or security exposure, include one or
more references or a description of the is-
sue. If possible, include a VuXML URL or a
CVE ID.

Example 1. Commit Log for a Commit Based on a PR
You want to commit a change based on a PR submitted by John Smith containing
a patch. The end of the commit message should look something like this.

...

Commit Log Messages

32

 PR: foo/12345
 Submitted by: John Smith <John.Smith@example.com>

Example 2. Commit Log for a Commit Needing Review

You want to change the virtual memory system. You have posted patches to the
appropriate mailing list (in this case, freebsd-arch) and the changes have been
approved.

...

 Reviewed by: ­-arch

Example 3. Commit Log for a Commit Needing Approval

You want to commit a port You have collaborated with the listed MAINTAINER,
who has told you to go ahead and commit.

...

 Approved by: abc (maintainer)

Where abc is the account name of the person who approved.

Example 4. Commit Log for a Commit Bringing in Code
from OpenBSD

You want to commit some code based on work done in the OpenBSD project.

...

 Obtained from: OpenBSD

Committer's Guide

33

Example 5. Commit Log for a Change to FreeBSD-
CURRENT with a Planned Commit to FreeBSD-STABLE
to Follow at a Later Date.
You want to commit some code which will be merged from FreeBSD-CURRENT
into the FreeBSD-STABLE branch after two weeks.

...

MFC after: 2 weeks

Where 2 is the number of days, weeks, or months after which an MFC is planned.
The weeks option may be day, days, week, weeks , month , months .

In many cases you may need to combine some of these.

Consider the situation where a user has submitted a PR containing code from the NetBSD
project. You are looking at the PR, but it is not an area of the tree you normally work in,
so you have decided to get the change reviewed by the arch mailing list. Since the change
is complex, you opt to MFC after one month to allow adequate testing.

The extra information to include in the commit would look something like

Example 6. Example Combined Commit Log
PR: foo/54321
Submitted by: John Smith <John.Smith@example.com>
Reviewed by: ­-arch
Obtained from: NetBSD
MFC after: 1 month

6. Preferred License for New Files
Currently the FreeBSD Project suggests and uses the following text as the preferred li-
cense scheme:

/*-
 * Copyright (c) [year] [your name]
 * All rights reserved.
 *

Preferred License for New Files

34

 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above ↺
copyright
 * notice, this list of conditions and the following disclaimer ↺
in the
 * documentation and/or other materials provided with the ↺
distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS ↺
IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ↺
TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ↺
PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE ↺
LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ↺
CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF ↺
SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS ↺
INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ↺
CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING ↺
IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ↺
POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * [id for your version control system, if any]
 */

The FreeBSD project strongly discourages the so-called "advertising clause" in new code.
Due to the large number of contributors to the FreeBSD project, complying with this
clause for many commercial vendors has become difficult. If you have code in the tree
with the advertising clause, please consider removing it. In fact, please consider using the
above license for your code.

The FreeBSD project discourages completely new licenses and variations on the standard
licenses. New licenses require the approval of the Core Team <core@FreeBSD.org > to
reside in the main repository. The more different licenses that are used in the tree, the
more problems that this causes to those wishing to utilize this code, typically from unin-
tended consequences from a poorly worded license.

Project policy dictates that code under some non-BSD licenses must be placed only in
specific sections of the repository, and in some cases, compilation must be conditional

mailto:core@FreeBSD.org

Committer's Guide

35

or even disabled by default. For example, the GENERIC kernel must be compiled under
only licenses identical to or substantially similar to the BSD license. GPL, APSL, CDDL, etc,
licensed software must not be compiled into GENERIC.

Developers are reminded that in open source, getting "open" right is just as important
as getting "source" right, as improper handling of intellectual property has serious con-
sequences. Any questions or concerns should immediately be brought to the attention of
the core team.

7. Developer Relations
If you are working directly on your own code or on code which is already well established
as your responsibility, then there is probably little need to check with other committers
before jumping in with a commit. If you see a bug in an area of the system which is clearly
orphaned (and there are a few such areas, to our shame), the same applies. If, however,
you are about to modify something which is clearly being actively maintained by some-
one else (and it is only by watching the repository-committers mailing list that you can
really get a feel for just what is and is not) then consider sending the change to them
instead, just as you would have before becoming a committer. For ports, you should con-
tact the listed MAINTAINER in the Makefile. For other parts of the repository, if you are
unsure who the active maintainer might be, it may help to scan the revision history to see
who has committed changes in the past. Bill Fenner <fenner@FreeBSD.org > has written
a nice shell script that can help determine who the active maintainer might be. It lists
each person who has committed to a given file along with the number of commits each
person has made. It can be found on freefall at ~fenner/bin/whodid . If your queries go
unanswered or the committer otherwise indicates a lack of interest in the area affected,
go ahead and commit it.

If you are unsure about a commit for any reason at all, have it reviewed by -hackers
before committing. Better to have it flamed then and there rather than when it is part
of the repository. If you do happen to commit something which results in controversy
erupting, you may also wish to consider backing the change out again until the matter is
settled. Remember – with a version control system we can always change it back.

Do not impugn the intentions of someone you disagree with. If they see a different solu-
tion to a problem than you, or even a different problem, it is not because they are stupid,
because they have questionable parentage, or because they are trying to destroy your
hard work, personal image, or FreeBSD, but simply because they have a different outlook
on the world. Different is good.

Disagree honestly. Argue your position from its merits, be honest about any shortcomings
it may have, and be open to seeing their solution, or even their vision of the problem,
with an open mind.

mailto:fenner@FreeBSD.org

If in doubt...

36

Accept correction. We are all fallible. When you have made a mistake, apologize and get
on with life. Do not beat up yourself, and certainly do not beat up others for your mistake.
Do not waste time on embarrassment or recrimination, just fix the problem and move on.

Ask for help. Seek out (and give) peer reviews. One of the ways open source software is
supposed to excel is in the number of eyeballs applied to it; this does not apply if nobody
will review code.

8. If in doubt...
When you are not sure about something, whether it be a technical issue or a project con-
vention be sure to ask. If you stay silent you will never make progress.

If it relates to a technical issue ask on the public mailing lists. Avoid the temptation to
email the individual person that knows the answer. This way everyone will be able to
learn from the question and the answer.

For project specific or administrative questions you should ask, in order:

• Your mentor or former mentor.

• An experienced committer on IRC, email, etc.

• Any team with a "hat", as they should give you a definitive answer.

• If still not sure, ask on FreeBSD developers mailing list.

Once your question is answered, if no one pointed you to documentation that spelled out
the answer to your question, document it, as others will have the same question.

9. GNATS
The FreeBSD Project utilizes GNATS for tracking bugs and change requests. Be sure that
if you commit a fix or suggestion found in a GNATS PR, you use edit-pr pr-number on
freefall to close it. It is also considered nice if you take time to close any PRs associat-
ed with your commits, if appropriate. You can also make use of send-pr(1) yourself for
proposing any change which you feel should probably be made, pending a more extensive
peer-review first.

You can find out more about GNATS at:

• FreeBSD Problem Report Handling Guidelines

• http://www.cs.utah.edu/csinfo/texinfo/gnats/gnats.html

• http://www.FreeBSD.org/support.html

http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1
http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/pr-guidelines/index.html
http://www.cs.utah.edu/csinfo/texinfo/gnats/gnats.html
http://www.FreeBSD.org/support.html

Committer's Guide

37

• send-pr(1)

You can run a local copy of GNATS, and then integrate the FreeBSD GNATS tree by creating
an rsync mirror. Then you can run GNATS commands locally, allowing you to query the
PR database without an Internet connection.

9.1. Mirroring the GNATS Tree

It is possible to mirror the GNATS database by installing net/rsync, and executing:

% rsync ­-va rsync://bit0.us-west.freebsd.org/FreeBSD-bit/gnats ­.

9.2. Useful Tools

Other than edit-pr there are a collection of tools in ~gnats/tools/ on freefall which
can make working with PRs much easier.

open-pr , close-pr , take-pr , and feedback-pr take PR numbers as arguments and then
ask you to select from a preexisting list of change reasons or let you type in your own.

change-pr is a multi purpose tool that lets you make multiple changes at the same time
with one command.

For example, to assign PR 123456 to yourself type take-pr 123456 . If you want to set the
PR to patched awaiting an MFC at the same time use: change-pr -t -p -m "awaiting
MFC" 123456

10. Who's Who
Besides the repository meisters, there are other FreeBSD project members and teams
whom you will probably get to know in your role as a committer. Briefly, and by no means
all-inclusively, these are:

Documentation Engineering Team <doceng@FreeBSD.org >
doceng is the group responsible for the documentation build infrastructure, approv-
ing new documentation committers, and ensuring that the FreeBSD website and doc-
umentation on the FTP site is up to date with respect to the CVS tree. It is not a con-
flict resolution body. The vast majority of documentation related discussion takes
place on the FreeBSD documentation project mailing list. More details regarding the
doceng team can be found in its charter. Committers interested in contributing to
the documentation should familiarize themselves with the Documentation Project
Primer.

Ruslan Ermilov <ru@FreeBSD.org >
Ruslan is Mister mdoc(7). If you are writing a manual page and need some advice on
the structure, or the markup, ask Ruslan.

http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1
mailto:doceng@FreeBSD.org
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://www.FreeBSD.org/internal/doceng.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/fdp-primer/index.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/fdp-primer/index.html
mailto:ru@FreeBSD.org
http://www.FreeBSD.org/cgi/man.cgi?query=mdoc&sektion=7

Who's Who

38

Bruce Evans <bde@FreeBSD.org >
Bruce is the Style Police-Meister. When you do a commit that could have been done
better, Bruce will be there to tell you. Be thankful that someone is. Bruce is also very
knowledgeable on the various standards applicable to FreeBSD.

Marcus von Appen <mva@FreeBSD.org >, Glen Barber <gjb@FreeBSD.org >, Kon-
stantin Belousov <kib@FreeBSD.org >, Joel Dahl <joel@FreeBSD.org >, Marc Fon-
vieille <blackend@FreeBSD.org >, Steven Kreuzer <skreuzer@FreeBSD.org >, Xin
Li <delphij@FreeBSD.org >, Josh Paetzel <jpaetzel@FreeBSD.org >, Craig Ro-
drigues <rodrigc@FreeBSD.org >, Hiroki Sato <hrs@FreeBSD.org >, Gleb Smirnoff
<glebius@FreeBSD.org >, Ken Smith <kensmith@FreeBSD.org >, Marius Strobl
<marius@FreeBSD.org >

These are the members of the Release Engineering Team <re@FreeBSD.org >. This
team is responsible for setting release deadlines and controlling the release process.
During code freezes, the release engineers have final authority on all changes to the
system for whichever branch is pending release status. If there is something you
want merged from FreeBSD-CURRENT to FreeBSD-STABLE (whatever values those
may have at any given time), these are the people to talk to about it.

Hiroki is also the keeper of the release documentation (src/release/doc/*). If you
commit a change that you think is worthy of mention in the release notes, please
make sure he knows about it. Better still, send him a patch with your suggested com-
mentary.

Dag-Erling C. Smørgrav <des@FreeBSD.org >
Dag-Erling is the FreeBSD Security Officer and oversees the Security Officer Team
<security-officer@FreeBSD.org >.

Garrett Wollman <wollman@FreeBSD.org >
If you need advice on obscure network internals or are not sure of some potential
change to the networking subsystem you have in mind, Garrett is someone to talk to.
Garrett is also very knowledgeable on the various standards applicable to FreeBSD.

FreeBSD committer's mailing list
svn-src-all, svn-ports-all and svn-doc-all are the mailing lists that the version con-
trol system uses to send commit messages to. You should never send email directly
to these lists. You should only send replies to this list when they are short and are
directly related to a commit.

FreeBSD developers mailing list
All committers are subscribed to -developers. This list was created to be a forum for
the committers “community” issues. Examples are Core voting, announcements, etc.

The FreeBSD developers mailing list is for the exclusive use of FreeBSD committers.
In order to develop FreeBSD, committers must have the ability to openly discuss mat-

mailto:bde@FreeBSD.org
mailto:mva@FreeBSD.org
mailto:gjb@FreeBSD.org
mailto:kib@FreeBSD.org
mailto:joel@FreeBSD.org
mailto:blackend@FreeBSD.org
mailto:skreuzer@FreeBSD.org
mailto:delphij@FreeBSD.org
mailto:jpaetzel@FreeBSD.org
mailto:rodrigc@FreeBSD.org
mailto:hrs@FreeBSD.org
mailto:glebius@FreeBSD.org
mailto:kensmith@FreeBSD.org
mailto:marius@FreeBSD.org
mailto:re@FreeBSD.org
mailto:des@FreeBSD.org
http://www.FreeBSD.org/security/
mailto:security-officer@FreeBSD.org
mailto:wollman@FreeBSD.org
http://lists.FreeBSD.org/mailman/listinfo/svn-src-all
http://lists.FreeBSD.org/mailman/listinfo/svn-ports-all
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-all

Committer's Guide

39

ters that will be resolved before they are publicly announced. Frank discussions of
work in progress are not suitable for open publication and may harm FreeBSD.

All FreeBSD committers are reminded to obey the copyright of the original author(s)
of FreeBSD developers mailing list mail. Do not publish or forward messages from
the FreeBSD developers mailing list outside the list membership without permission
of all of the authors.

Copyright violators will be removed from the FreeBSD developers mailing list, result-
ing in a suspension of commit privileges. Repeated or flagrant violations may result
in permanent revocation of commit privileges.

This list is not intended as a place for code reviews or a replacement for the FreeBSD
architecture and design mailing list. In fact using it as such hurts the FreeBSD Project
as it gives a sense of a closed list where general decisions affecting all of the FreeBSD
using community are made without being “open”. Last, but not least never, never ever,
email the FreeBSD developers mailing list and CC:/BCC: another FreeBSD list. Never, ever
email another FreeBSD email list and CC:/BCC: the FreeBSD developers mailing list.
Doing so can greatly diminish the benefits of this list.

11. SSH Quick-Start Guide
1. If you do not wish to type your password in every time you use ssh(1), and you use

RSA or DSA keys to authenticate, ssh-agent(1) is there for your convenience. If you
want to use ssh-agent(1), make sure that you run it before running other applica-
tions. X users, for example, usually do this from their .xsession or .xinitrc. See
ssh-agent(1) for details.

2. Generate a key pair using ssh-keygen(1). The key pair will wind up in your
$HOME/.ssh/ directory.

3. Send your public key ($HOME/.ssh/id_dsa.pub or $HOME/.ssh/id_rsa.pub) to the
person setting you up as a committer so it can be put into the yourlogin file in /
etc/ssh-keys/ on freefall .

Now you should be able to use ssh-add(1) for authentication once per session. This will
prompt you for your private key's pass phrase, and then store it in your authentication
agent (ssh-agent(1)). If you no longer wish to have your key stored in the agent, issuing
ssh-add -d will remove it.

Test by doing something such as ssh freefall.FreeBSD.org ls /usr .

For more information, see security/openssh, ssh(1), ssh-add(1), ssh-agent(1), ssh-key-
gen(1), and scp(1).

http://lists.FreeBSD.org/mailman/listinfo/freebsd-arch
http://lists.FreeBSD.org/mailman/listinfo/freebsd-arch
http://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-keygen&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-add&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-add&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-keygen&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh-keygen&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=scp&sektion=1

Coverity® Availability for FreeBSD Com-
mitters

40

12. Coverity® Availability for FreeBSD Committers
All FreeBSD developers can obtain access to Coverity analysis results of all FreeBSD Project
software. All who are interested in obtaining access to the analysis results of the auto-
mated Coverity runs, can sign up at Coverity Scan

The FreeBSD wiki includes a mini-guide for developers who are interested in working with
the Coverity® analysis reports: http://wiki.freebsd.org/CoverityPrevent . Please
note that this mini-guide is only readable by FreeBSD developers, so if you cannot access
this page, you will have to ask someone to add you to the appropriate Wiki access list.

Finally, all FreeBSD developers who are going to use Coverity® are always encouraged to
ask for more details and usage information, by posting any questions to the mailing list
of the FreeBSD developers.

13. The FreeBSD Committers' Big List of Rules
1. Respect other committers.

2. Respect other contributors.

3. Discuss any significant change before committing.

4. Respect existing maintainers (if listed in the MAINTAINER field in Makefile or in the
MAINTAINER file in the top-level directory).

5. Any disputed change must be backed out pending resolution of the dispute if requested
by a maintainer. Security related changes may override a maintainer's wishes at the
Security Officer's discretion.

6. Changes go to FreeBSD-CURRENT before FreeBSD-STABLE unless specifically permit-
ted by the release engineer or unless they are not applicable to FreeBSD-CURRENT.
Any non-trivial or non-urgent change which is applicable should also be allowed to sit
in FreeBSD-CURRENT for at least 3 days before merging so that it can be given suffi-
cient testing. The release engineer has the same authority over the FreeBSD-STABLE
branch as outlined for the maintainer in rule #5.

7. Do not fight in public with other committers; it looks bad. If you must “strongly dis-
agree” about something, do so only in private.

8. Respect all code freezes and read the committers and developers mailing lists in a
timely manner so you know when a code freeze is in effect.

9. When in doubt on any procedure, ask first!

10.Test your changes before committing them.

http://scan.coverity.com/
http://wiki.freebsd.org/CoverityPrevent

Committer's Guide

41

11.Do not commit to anything under the src/contrib , src/crypto , or src/sys/contrib
trees without explicit approval from the respective maintainer(s).

As noted, breaking some of these rules can be grounds for suspension or, upon repeated
offense, permanent removal of commit privileges. Individual members of core have the
power to temporarily suspend commit privileges until core as a whole has the chance to
review the issue. In case of an “emergency” (a committer doing damage to the reposito-
ry), a temporary suspension may also be done by the repository meisters. Only a 2/3 ma-
jority of core has the authority to suspend commit privileges for longer than a week or
to remove them permanently. This rule does not exist to set core up as a bunch of cruel
dictators who can dispose of committers as casually as empty soda cans, but to give the
project a kind of safety fuse. If someone is out of control, it is important to be able to
deal with this immediately rather than be paralyzed by debate. In all cases, a committer
whose privileges are suspended or revoked is entitled to a “hearing” by core, the total
duration of the suspension being determined at that time. A committer whose privileges
are suspended may also request a review of the decision after 30 days and every 30 days
thereafter (unless the total suspension period is less than 30 days). A committer whose
privileges have been revoked entirely may request a review after a period of 6 months
has elapsed. This review policy is strictly informal and, in all cases, core reserves the right
to either act on or disregard requests for review if they feel their original decision to be
the right one.

In all other aspects of project operation, core is a subset of committers and is bound by
the same rules. Just because someone is in core this does not mean that they have special
dispensation to step outside any of the lines painted here; core's “special powers” only
kick in when it acts as a group, not on an individual basis. As individuals, the core team
members are all committers first and core second.

13.1. Details

1. Respect other committers.

This means that you need to treat other committers as the peer-group developers that
they are. Despite our occasional attempts to prove the contrary, one does not get to be
a committer by being stupid and nothing rankles more than being treated that way by
one of your peers. Whether we always feel respect for one another or not (and every-
one has off days), we still have to treat other committers with respect at all times, on
public forums and in private email.

Being able to work together long term is this project's greatest asset, one far more
important than any set of changes to the code, and turning arguments about code into
issues that affect our long-term ability to work harmoniously together is just not worth
the trade-off by any conceivable stretch of the imagination.

To comply with this rule, do not send email when you are angry or otherwise behave
in a manner which is likely to strike others as needlessly confrontational. First calm

Details

42

down, then think about how to communicate in the most effective fashion for convinc-
ing the other person(s) that your side of the argument is correct, do not just blow off
some steam so you can feel better in the short term at the cost of a long-term flame
war. Not only is this very bad “energy economics”, but repeated displays of public ag-
gression which impair our ability to work well together will be dealt with severely by
the project leadership and may result in suspension or termination of your commit
privileges. The project leadership will take into account both public and private com-
munications brought before it. It will not seek the disclosure of private communica-
tions, but it will take it into account if it is volunteered by the committers involved
in the complaint.

All of this is never an option which the project's leadership enjoys in the slightest, but
unity comes first. No amount of code or good advice is worth trading that away.

2. Respect other contributors.

You were not always a committer. At one time you were a contributor. Remember
that at all times. Remember what it was like trying to get help and attention. Do not
forget that your work as a contributor was very important to you. Remember what it
was like. Do not discourage, belittle, or demean contributors. Treat them with respect.
They are our committers in waiting. They are every bit as important to the project as
committers. Their contributions are as valid and as important as your own. After all,
you made many contributions before you became a committer. Always remember that.

Consider the points raised under 1 and apply them also to contributors.

3. Discuss any significant change before committing.

The repository is not where changes should be initially submitted for correctness or
argued over, that should happen first in the mailing lists and the commit should only
happen once something resembling consensus has been reached. This does not mean
that you have to ask permission before correcting every obvious syntax error or man-
ual page misspelling, simply that you should try to develop a feel for when a proposed
change is not quite such a no-brainer and requires some feedback first. People really
do not mind sweeping changes if the result is something clearly better than what they
had before, they just do not like being surprized by those changes. The very best way
of making sure that you are on the right track is to have your code reviewed by one
or more other committers.

When in doubt, ask for review!

4. Respect existing maintainers if listed.

Many parts of FreeBSD are not “owned” in the sense that any specific individual
will jump up and yell if you commit a change to “their” area, but it still pays to
check first. One convention we use is to put a maintainer line in the Makefile

Committer's Guide

43

for any package or subtree which is being actively maintained by one or more
people; see http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-hand-
book/policies.html for documentation on this. Where sections of code have several
maintainers, commits to affected areas by one maintainer need to be reviewed by at
least one other maintainer. In cases where the “maintainer-ship” of something is not
clear, you can also look at the repository logs for the file(s) in question and see if some-
one has been working recently or predominantly in that area.

Other areas of FreeBSD fall under the control of someone who manages an overall cat-
egory of FreeBSD evolution, such as internationalization or networking. See http://
www.FreeBSD.org/administration.html for more information on this.

5. Any disputed change must be backed out pending resolution of the dispute if requested
by a maintainer. Security related changes may override a maintainer's wishes at the
Security Officer's discretion.

This may be hard to swallow in times of conflict (when each side is convinced that
they are in the right, of course) but a version control system makes it unnecessary to
have an ongoing dispute raging when it is far easier to simply reverse the disputed
change, get everyone calmed down again and then try to figure out what is the best
way to proceed. If the change turns out to be the best thing after all, it can be easily
brought back. If it turns out not to be, then the users did not have to live with the
bogus change in the tree while everyone was busily debating its merits. People very
rarely call for back-outs in the repository since discussion generally exposes bad or
controversial changes before the commit even happens, but on such rare occasions
the back-out should be done without argument so that we can get immediately on to
the topic of figuring out whether it was bogus or not.

6. Changes go to FreeBSD-CURRENT before FreeBSD-STABLE unless specifically permit-
ted by the release engineer or unless they are not applicable to FreeBSD-CURRENT.
Any non-trivial or non-urgent change which is applicable should also be allowed to sit
in FreeBSD-CURRENT for at least 3 days before merging so that it can be given suffi-
cient testing. The release engineer has the same authority over the FreeBSD-STABLE
branch as outlined in rule #5.

This is another “do not argue about it” issue since it is the release engineer who is
ultimately responsible (and gets beaten up) if a change turns out to be bad. Please re-
spect this and give the release engineer your full cooperation when it comes to the
FreeBSD-STABLE branch. The management of FreeBSD-STABLE may frequently seem
to be overly conservative to the casual observer, but also bear in mind the fact that
conservatism is supposed to be the hallmark of FreeBSD-STABLE and different rules
apply there than in FreeBSD-CURRENT. There is also really no point in having Free-
BSD-CURRENT be a testing ground if changes are merged over to FreeBSD-STABLE im-
mediately. Changes need a chance to be tested by the FreeBSD-CURRENT developers,
so allow some time to elapse before merging unless the FreeBSD-STABLE fix is critical,

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook/policies.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook/policies.html
http://www.FreeBSD.org/administration.html
http://www.FreeBSD.org/administration.html

Details

44

time sensitive or so obvious as to make further testing unnecessary (spelling fixes to
manual pages, obvious bug/typo fixes, etc.) In other words, apply common sense.

Changes to the security branches (for example, RELENG_7_0) must be approved by a
member of the Security Officer Team <security-officer@FreeBSD.org >, or in some
cases, by a member of the Release Engineering Team <re@FreeBSD.org >.

7. Do not fight in public with other committers; it looks bad. If you must “strongly dis-
agree” about something, do so only in private.

This project has a public image to uphold and that image is very important to all of us,
especially if we are to continue to attract new members. There will be occasions when,
despite everyone's very best attempts at self-control, tempers are lost and angry words
are exchanged. The best thing that can be done in such cases is to minimize the effects
of this until everyone has cooled back down. That means that you should not air your
angry words in public and you should not forward private correspondence to public
mailing lists or aliases. What people say one-to-one is often much less sugar-coated
than what they would say in public, and such communications therefore have no place
there - they only serve to inflame an already bad situation. If the person sending you a
flame-o-gram at least had the grace to send it privately, then have the grace to keep it
private yourself. If you feel you are being unfairly treated by another developer, and
it is causing you anguish, bring the matter up with core rather than taking it public.
Core will do its best to play peace makers and get things back to sanity. In cases where
the dispute involves a change to the codebase and the participants do not appear to be
reaching an amicable agreement, core may appoint a mutually-agreeable 3rd party to
resolve the dispute. All parties involved must then agree to be bound by the decision
reached by this 3rd party.

8. Respect all code freezes and read the committers and developers mailing list on a
timely basis so you know when a code freeze is in effect.

Committing unapproved changes during a code freeze is a really big mistake and com-
mitters are expected to keep up-to-date on what is going on before jumping in after
a long absence and committing 10 megabytes worth of accumulated stuff. People who
abuse this on a regular basis will have their commit privileges suspended until they
get back from the FreeBSD Happy Reeducation Camp we run in Greenland.

9. When in doubt on any procedure, ask first!

Many mistakes are made because someone is in a hurry and just assumes they know
the right way of doing something. If you have not done it before, chances are good that
you do not actually know the way we do things and really need to ask first or you are
going to completely embarrass yourself in public. There is no shame in asking “how
in the heck do I do this?” We already know you are an intelligent person; otherwise,
you would not be a committer.

mailto:security-officer@FreeBSD.org
mailto:re@FreeBSD.org

Committer's Guide

45

10.Test your changes before committing them.

This may sound obvious, but if it really were so obvious then we probably would not
see so many cases of people clearly not doing this. If your changes are to the kernel,
make sure you can still compile both GENERIC and LINT. If your changes are anywhere
else, make sure you can still make world. If your changes are to a branch, make sure
your testing occurs with a machine which is running that code. If you have a change
which also may break another architecture, be sure and test on all supported archi-
tectures. Please refer to the FreeBSD Internal Page for a list of available resources. As
other architectures are added to the FreeBSD supported platforms list, the appropriate
shared testing resources will be made available.

11.Do not commit to anything under the src/contrib , src/crypto , and src/sys/con-
trib trees without explicit approval from the respective maintainer(s).

The trees mentioned above are for contributed software usually imported onto a ven-
dor branch. Committing something there, even if it does not take the file off the vendor
branch, may cause unnecessary headaches for those responsible for maintaining that
particular piece of software. Thus, unless you have explicit approval from the main-
tainer (or you are the maintainer), do not commit there!

Please note that this does not mean you should not try to improve the software in
question; you are still more than welcome to do so. Ideally, you should submit your
patches to the vendor. If your changes are FreeBSD-specific, talk to the maintainer;
they may be willing to apply them locally. But whatever you do, do not commit there
by yourself!

Contact the Core Team <core@FreeBSD.org > if you wish to take up maintainership of
an unmaintained part of the tree.

13.2. Policy on Multiple Architectures

FreeBSD has added several new architecture ports during recent release cycles and is truly
no longer an i386™ centric operating system. In an effort to make it easier to keep Free-
BSD portable across the platforms we support, core has developed the following mandate:

Our 32-bit reference platform is i386, and our 64-bit reference platform
is sparc64. Major design work (including major API and ABI changes)
must prove itself on at least one 32-bit and at least one 64-bit platform,
preferably the primary reference platforms, before it may be commit-
ted to the source tree.

The i386 and sparc64 platforms were chosen due to being more readily available to de-
velopers and as representatives of more diverse processor and system designs - big ver-
sus little endian, register file versus register stack, different DMA and cache implementa-
tions, hardware page tables versus software TLB management etc.

http://www.FreeBSD.org/internal/
mailto:core@FreeBSD.org

Other Suggestions

46

The ia64 platform has many of the same complications that sparc64 has, but is still limited
in availability to developers.

We will continue to re-evaluate this policy as cost and availability of the 64-bit platforms
change.

Developers should also be aware of our Tier Policy for the long term support of hardware
architectures. The rules here are intended to provide guidance during the development
process, and are distinct from the requirements for features and architectures listed in
that section. The Tier rules for feature support on architectures at release-time are more
strict than the rules for changes during the development process.

13.3. Other Suggestions

When committing documentation changes, use a spell checker before committing. For all
XML docs, you should also verify that your formatting directives are correct by running
make lint .

For all on-line manual pages, run manck (from ports) over the manual page to verify all of
the cross references and file references are correct and that the man page has all of the
appropriate MLINKs installed.

Do not mix style fixes with new functionality. A style fix is any change which does not
modify the functionality of the code. Mixing the changes obfuscates the functionality
change when asking for differences between revisions, which can hide any new bugs. Do
not include whitespace changes with content changes in commits to doc/ or www/. The
extra clutter in the diffs makes the translators' job much more difficult. Instead, make
any style or whitespace changes in separate commits that are clearly labeled as such in
the commit message.

13.4. Deprecating Features

When it is necessary to remove functionality from software in the base system the fol-
lowing guidelines should be followed whenever possible:

1. Mention is made in the manual page and possibly the release notes that the option,
utility, or interface is deprecated. Use of the deprecated feature generates a warning.

2. The option, utility, or interface is preserved until the next major (point zero) release.

3. The option, utility, or interface is removed and no longer documented. It is now obso-
lete. It is also generally a good idea to note its removal in the release notes.

Committer's Guide

47

14. Support for Multiple Architectures
FreeBSD is a highly portable operating system intended to function on many different
types of hardware architectures. Maintaining clean separation of Machine Dependent
(MD) and Machine Independent (MI) code, as well as minimizing MD code, is an impor-
tant part of our strategy to remain agile with regards to current hardware trends. Each
new hardware architecture supported by FreeBSD adds substantially to the cost of code
maintenance, toolchain support, and release engineering. It also dramatically increases
the cost of effective testing of kernel changes. As such, there is strong motivation to dif-
ferentiate between classes of support for various architectures while remaining strong in
a few key architectures that are seen as the FreeBSD “target audience”.

14.1. Statement of General Intent

The FreeBSD Project targets "production quality commercial off-the-shelf (COTS) work-
station, server, and high-end embedded systems". By retaining a focus on a narrow set of
architectures of interest in these environments, the FreeBSD Project is able to maintain
high levels of quality, stability, and performance, as well as minimize the load on various
support teams on the project, such as the ports team, documentation team, security offi-
cer, and release engineering teams. Diversity in hardware support broadens the options
for FreeBSD consumers by offering new features and usage opportunities (such as support
for 64-bit CPUs, use in embedded environments, etc.), but these benefits must always be
carefully considered in terms of the real-world maintenance cost associated with addi-
tional platform support.

The FreeBSD Project differentiates platform targets into four tiers. Each tier includes a
specification of the requirements for an architecture to be in that tier, as well as specifying
the obligations of developers with regards to the platform. In addition, a policy is defined
regarding the circumstances required to change the tier of an architecture.

14.2. Tier 1: Fully Supported Architectures

Tier 1 platforms are fully supported by the security officer, release engineering, and tool-
chain maintenance staff. New features added to the operating system must be fully func-
tional across all Tier 1 architectures for every release (features which are inherently ar-
chitecture-specific, such as support for hardware device drivers, may be exempt from this
requirement). In general, all Tier 1 platforms must have build and Tinderbox support ei-
ther in the FreeBSD.org cluster, or be easily available for all developers. Embedded plat-
forms may substitute an emulator available in the FreeBSD cluster for actual hardware.

Tier 1 architectures are expected to be Production Quality with respects to all aspects of
the FreeBSD operating system, including installation and development environments.

Tier 1 architectures are expected to be completely integrated into the source tree and
have all features necessary to produce an entire system relevant for that target architec-
ture. Tier 1 architectures generally have at least 6 active developers.

Tier 2: Developmental Architectures

48

Tier 1 architectures are expected to be fully supported by the ports system. All the ports
should build on a Tier 1 platform, or have the appropriate filters to prevent the inap-
propriate ones from building there. The packaging system must support all Tier 1 archi-
tectures. To ensure an architecture's Tier 1 status, proponents of that architecture must
show that all relevant packages can be built on that platform.

Tier 1 embedded architectures must be able to cross-build packages on at least one other
Tier 1 architecture. The packages must be the most relevant for the platform, but may be
a non-empty subset of those that build natively.

Tier 1 architectures must be fully documented. All basic operations need to be covered
by the handbook or other documents. All relevant integration documentation must also
be integrated into the tree, or readily available.

Current Tier 1 platforms are i386 and amd64.

14.3. Tier 2: Developmental Architectures

Tier 2 platforms are not supported by the security officer and release engineering teams.
Platform maintainers are responsible for toolchain support in the tree. The toolchain
maintainer is expected to work with the platform maintainers to refine these changes.
Major new toolchain components are allowed to break support for Tier 2 architectures
if the FreeBSD-local changes have not been incorporated upstream. The toolchain main-
tainers are expected to provide prompt review of any proposed changes and cannot block,
through their inaction, changes going into the tree. New features added to FreeBSD should
be feasible to implement on these platforms, but an implementation is not required before
the feature may be added to the FreeBSD source tree. New features that may be difficult
to implement on Tier 2 architectures should provide a means of disabling them on those
architectures. The implementation of a Tier 2 architecture may be committed to the main
FreeBSD tree as long as it does not interfere with production work on Tier 1 platforms,
or substantially with other Tier 2 platforms. Before a Tier 2 platform can be added to the
FreeBSD base source tree, the platform must be able to boot multi-user on actual hard-
ware. Generally, there must be at least three active developers working on the platform.

Tier 2 architectures are usually systems targeted at Tier 1 support, but that are still under
development. Architectures reaching end of life may also be moved from Tier 1 status
to Tier 2 status as the availability of resources to continue to maintain the system in a
Production Quality state diminishes. Well supported niche architectures may also be Tier
2.

Tier 2 architectures may have some support for them integrated into the ports infrastruc-
ture. They may have cross compilation support added, at the discretion of portmgr. Some
ports must built natively into packages if the package system supports that architecture.
If not integrated into the base system, some external patches for the architecture for ports
must be available.

Committer's Guide

49

Tier 2 architectures can be integrated into the FreeBSD handbook. The basics for how
to get a system running must be documented, although not necessarily for every single
board or system a Tier 2 architecture supports. The supported hardware list must exist
and should be no more than a couple of months old. It should be integrated into the Free-
BSD documentation.

Current Tier 2 platforms are arm, ia64, pc98, powerpc, and sparc64.

14.4. Tier 3: Experimental Architectures

Tier 3 platforms are not supported by the security officer and release engineering teams.
At the discretion of the toolchain maintainer, they may be supported in the toolchain.
Tier 3 platforms are architectures in the early stages of development, for non-mainstream
hardware platforms, or which are considered legacy systems unlikely to see broad future
use. New Tier 3 systems will not be committed to the base source tree. Support for Tier 3
systems may be worked on in the FreeBSD Perforce Repository, providing source control
and easier change integration from the main FreeBSD tree. Platforms that transition to
Tier 3 status may be removed from the tree if they are no longer actively supported by
the FreeBSD developer community at the discretion of the release engineer.

Tier 3 platforms may have ports support, either integrated or external, but do not require
it.

Tier 3 platforms must have the basics documented for how to build a kernel and how to
boot it on at least one target hardware or emulation environment. This documentation
need not be integrated into the FreeBSD tree.

Current Tier 3 platforms are mips and S/390®.

14.5. Tier 4: Unsupported Architectures

Tier 4 systems are not supported in any form by the project.

All systems not otherwise classified into a support tier are Tier 4 systems.

14.6. Policy on Changing the Tier of an Architecture

Systems may only be moved from one tier to another by approval of the FreeBSD Core
Team, which shall make that decision in collaboration with the Security Officer, Release
Engineering, and toolchain maintenance teams.

15. Ports Specific FAQ

15.1. Adding a New Port
Q: How do I add a new port?

Ports Specific FAQ

50

A: First, please read the section about repository copies.

The easiest way to add a new port is to use the addport script from your machine
(located in the ports/Tools/scripts directory). It will add a port from the di-
rectory you specify, determining the category automatically from the port Make-
file. It will also add an entry to the port's category Makefile. It was written by
Michael Haro <mharo@FreeBSD.org >, Will Andrews <will@FreeBSD.org >, and Re-
nato Botelho <garga@FreeBSD.org >. When sending questions about this script to
the FreeBSD ports mailing list, please also CC Chris Rees <crees@FreeBSD.org >,
the current maintainer.

Q: Any other things I need to know when I add a new port?

A: Check the port, preferably to make sure it compiles and packages correctly. This is
the recommended sequence:

make install
make package
make deinstall
pkg_add package you built above
make deinstall
make reinstall
make package

The Porters Handbook contains more detailed instructions.

Use portlint(1) to check the syntax of the port. You do not necessarily have to elim-
inate all warnings but make sure you have fixed the simple ones.

If the port came from a submitter who has not contributed to the Project before,
add that person's name to the Additional Contributors section of the FreeBSD Con-
tributors List.

Close the PR if the port came in as a PR. To close a PR, just do edit-pr PR# on
freefall and change the state from open to closed . You will be asked to enter
a log message and then you are done.

15.2. Removing an Existing Port
Q: How do I remove an existing port?

A: First, please read the section about repository copies. Before you remove the port,
you have to verify there are no other ports depending on it.

• Make sure there is no dependency on the port in the ports collection:

• The port's PKGNAME should appear in exactly one line in a recent INDEX file.

mailto:mharo@FreeBSD.org
mailto:will@FreeBSD.org
mailto:garga@FreeBSD.org
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
mailto:crees@FreeBSD.org
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/index.html
http://www.FreeBSD.org/cgi/man.cgi?query=portlint&sektion=1
http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributors/contrib-additional.html

Committer's Guide

51

• No other ports should contain any reference to the port's directory or PKG-
NAME in their Makefiles

• Then, remove the port:

1. Remove the port's files and directory with svn remove.

2. Remove the SUBDIR listing of the port in the parent directory Makefile.

3. Add an entry to ports/MOVED .

4. Remove the port from ports/LEGAL if it is there.

Alternatively, you can use the rmport script, from ports/Tools/scripts . This
script was written by Vasil Dimov <vd@FreeBSD.org >. When sending questions
about this script to the FreeBSD ports mailing list, please also CC Chris Rees
<crees@FreeBSD.org >, the current maintainer.

15.3. Re-adding a Deleted Port
Q: How do I re-add a deleted port?

A: This is essentially the reverse of deleting a port.

1. Figure out when the port was removed. Use this list and then copy the last
living revision of the port:

% cd ­/usr/ports/category

% svn cp ­'svn+ssh://svn.freebsd.org/ports/category/portname/
@{YYYY-MM-DD}' portname

Pick a date that is before the removal but after the last true commit.

2. Perform whatever changes are necessary to make the port work again. If it was
deleted because the distfiles are no longer available you will need to volunteer
to host them yourself, or find someone else to do so.

3. svn add or svn remove any appropriate files.

4. Restore the SUBDIR listing of the port in the parent directory Makefile, and
delete the entry from ports/MOVED .

5. If the port had an entry in ports/LEGAL , restore it.

6. svn commit these changes, preferably in one step.

mailto:vd@FreeBSD.org
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
mailto:crees@FreeBSD.org
http://people.freebsd.org/~crees/removed_ports/index.xml

Ports Specific FAQ

52

Tip
addport now detects when the port to add has previously ex-
isted, and should handle all except the ports/LEGAL step au-
tomatically.

15.4. Repository Copies
Q: When do we need a repository copy?

A: When you want to add a port that is related to any port that is already in the tree
in a separate directory, you have to do a repository copy. Here related means it is a
different version or a slightly modified version. Examples are print/ghostscript*
(different versions) and x11-wm/windowmaker* (English-only and internationalized
version).

Another example is when a port is moved from one subdirectory to another, or
when you want to change the name of a directory because the author(s) renamed
their software even though it is a descendant of a port already in a tree.

Q: What do I need to do?

A: With Subversion, a repo copy can be done by any committer:

• Doing a repo copy:

1. First make sure that you were using an up to date ports tree and the target
directory does not exist.

2. Use svn move or svn copy to do the repo copy.

3. Upgrade the copied port to the new version. Remember to change the
LATEST_LINK so there are no duplicate ports with the same name. In
some rare cases it may be necessary to change the PORTNAME instead of
LATEST_LINK , but this should only be done when it is really needed — e.g.,
using an existing port as the base for a very similar program with a differ-
ent name, or upgrading a port to a new upstream version which actually
changes the distribution name, like the transition from textproc/libxml
to textproc/libxml2 . In most cases, changing LATEST_LINK should suf-
fice.

4. Add the new subdirectory to the SUBDIR listing in the parent directory Make-
file. You can run make checksubdirs in the parent directory to check this.

Committer's Guide

53

5. If the port changed categories, modify the CATEGORIES line of the port's
Makefile accordingly

6. Add an entry to ports/MOVED , if you remove the original port.

7. Commit all changes on one commit.

• When removing a port:

1. Perform a thorough check of the ports collection for any dependencies on
the old port location/name, and update them. Running grep on INDEX is not
enough because some ports have dependencies enabled by compile-time op-
tions. A full grep -r of the ports collection is recommended.

2. Remove the old port and the old SUBDIR entry.

3. Add an entry to ports/MOVED .

• After repo moves (“rename” operations where a port is copied and the old loca-
tion is removed):

• Follow the same steps that are outlined in the previous two entries, to acti-
vate the new location of the port and remove the old one.

15.5. Ports Freeze
Q: What is a “ports freeze”?

A: Before a release, it is necessary to restrict commits to the ports tree for a short
period of time while the packages and the release itself are being built. This is to
ensure consistency among the various parts of the release, and is called the “ports
freeze”.

For more information on the background and policies surrounding a ports freeze,
see the Portmgr Quality Assurance page.

Q: What is a “ports slush” or “feature freeze”?

A: During a release cycle the ports tree may be in a “slush” state instead of in a hard
freeze. The goal during a slush is to reach a stable ports tree to avoid rebuilding
large sets of packages for the release and to tag the tree. During this time “sweeping
changes” are prohibited unless specifically permitted by portmgr. Complete details
about what qualifies as a sweeping change can be found on the Portmgr Implemen-
tation page.

The benefit of a slush as opposed to a complete freeze is that it allows maintainers
to continue adding new ports, making routine version updates, and bug fixes to

http://www.FreeBSD.org/portmgr/qa.html
http://www.FreeBSD.org/portmgr/implementation.html
http://www.FreeBSD.org/portmgr/implementation.html

Ports Specific FAQ

54

most existing ports, as long as the number of affected ports is minimal. For example,
updating the shared library version on a port that many other ports depend on.

Q: How long is a ports freeze or slush?

A: A freeze only lasts long enough to tag the tree. A slush usually lasts a week or two,
but may last longer.

Q: What does it mean to me?

A: During a ports freeze, you are not allowed to commit anything to the tree with-
out explicit approval from the Ports Management Team. “Explicit approval” here
means that you send a patch to the Ports Management Team for review and get a
reply saying, “Go ahead and commit it.”

Not everything is allowed to be committed during a freeze. Please see the Portmgr
Quality Assurance page for more information.

Note that you do not have implicit permission to fix a port during the freeze just
because it is broken.

During a ports slush, you are still allowed to commit but you must exercise more
caution in what you commit. Furthermore a special note (typically “Feature Safe:
yes”) must be added to the commit message.

Q: How do I know when the ports slush starts?

A: The Ports Management Team will send out warning messages to the FreeBSD ports
mailing list and FreeBSD committer's mailing list announcing the start of the im-
pending release, usually two or three weeks in advance. The exact starting time
will not be determined until a few days before the actual release. This is because
the ports slush has to be synchronized with the release, and it is usually not known
until then when exactly the release will be rolled.

When the slush starts, there will be another announcement to the FreeBSD ports
mailing list and FreeBSD committer's mailing list, of course.

Q: How do I know when the freeze or slush ends?

A: A few hours after the release, the Ports Management Team will send out a mail to
the FreeBSD ports mailing list and FreeBSD committer's mailing list announcing
the end of the ports freeze or slush. Note that the release being cut does not auto-
matically indicate the end of the freeze. We have to make sure there will be no last
minute snafus that result in an immediate re-rolling of the release.

15.6. Creating a New Category
Q: What is the procedure for creating a new category?

http://www.FreeBSD.org/portmgr/qa.html
http://www.FreeBSD.org/portmgr/qa.html
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports

Committer's Guide

55

A: Please see Proposing a New Category in the Porter's Handbook. Once that proce-
dure has been followed and the PR has been assigned to Ports Management Team
<portmgr@FreeBSD.org >, it is their decision whether or not to approve it. If they
do, it is their responsibility to do the following:

1. Perform any needed moves. (This only applies to physical categories.)

2. Update the VALID_CATEGORIES definition in ports/Mk/bsd.port.mk .

3. Assign the PR back to you.

Q: What do I need to do to implement a new physical category?

A: 1. Upgrade each moved port's Makefile. Do not connect the new category to the
build yet.

To do this, you will need to:

1. Change the port's CATEGORIES (this was the point of the exercise, remem-
ber?) The new category should be listed first. This will help to ensure that
the PKGORIGIN is correct.

2. Run a make describe . Since the top-level make index that you will be
running in a few steps is an iteration of make describe over the entire
ports hierarchy, catching any errors here will save you having to re-run
that step later on.

3. If you want to be really thorough, now might be a good time to run
portlint(1).

2. Check that the PKGORIGIN s are correct. The ports system uses each port's CAT-
EGORIES entry to create its PKGORIGIN , which is used to connect installed pack-
ages to the port directory they were built from. If this entry is wrong, common
port tools like pkg_version(1) and portupgrade(1) fail.

To do this, use the chkorigin.sh tool, as follows: env PORTSDIR=/path/to/
ports sh -e /path/to/ports/Tools/scripts/chkorigin.sh . This will
check every port in the ports tree, even those not connected to the build, so
you can run it directly after the move operation. Hint: do not forget to look at
the PKGORIGIN s of any slave ports of the ports you just moved!

3. On your own local system, test the proposed changes: first, comment out the
SUBDIR entries in the old ports' categories' Makefiles; then enable building
the new category in ports/Makefile . Run make checksubdirs in the affected
category directories to check the SUBDIR entries. Next, in the ports/ directo-
ry, run make index . This can take over 40 minutes on even modern systems;
however, it is a necessary step to prevent problems for other people.

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/makefile-categories.html#PROPOSING-CATEGORIES
mailto:portmgr@FreeBSD.org
http://www.FreeBSD.org/cgi/man.cgi?query=portlint&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=pkg_version&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=portupgrade&sektion=1

Ports Specific FAQ

56

4. Once this is done, you can commit the updated ports/Makefile to connect
the new category to the build and also commit the Makefile changes for the
old category or categories.

5. Add appropriate entries to ports/MOVED .

6. Update the documentation by modifying the following:

• the list of categories in the Porter's Handbook

• www/en/ports/categories . Note that these are now displayed by sub-
groups, as specified in www/en/ports/categories.descriptions .

(Note: these are in the docs, not the ports, repository). If you are not a docs
committer, you will need to submit a PR for this.

7. Only once all the above have been done, and no one is any longer reporting
problems with the new ports, should the old ports be deleted from their pre-
vious locations in the repository.

It is not necessary to manually update the ports web pages to reflect the new catego-
ry. This is now done automatically via your change to www/en/ports/categories
and the daily automated rebuild of INDEX.

Q: What do I need to do to implement a new virtual category?

A: This is much simpler than a physical category. You only need to modify the follow-
ing:

• the list of categories in the Porter's Handbook

• www/en/ports/categories

15.7. Miscellaneous Questions
Q: How do I know if my port is building correctly or not?

A: First, go check http://pointyhat.FreeBSD.org/errorlogs/ . There you will find
error logs from the latest package building runs on all supported platforms for the
most recent branches.

However, just because the port does not show up there does not mean it is
building correctly. (One of the dependencies may have failed, for instance.) The
relevant directories are available on pointyhat under /a/portbuild/<arch>/
<major_version> so feel free to dig around. Each architecture and version has the
following subdirectories:

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/makefile-categories.html#PORTING-CATEGORIES
http://www.FreeBSD.org/ports/index.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/makefile-categories.html#PORTING-CATEGORIES
http://pointyhat.FreeBSD.org/errorlogs/

Committer's Guide

57

errors error logs from latest <major_version> run on ↺
<arch>
logs all logs from latest <major_version> run on <arch>
packages packages from latest <major_version> run on <arch>
bak/errors error logs from last complete <major_version> run ↺
on <arch>
bak/logs all logs from last complete <major_version> run ↺
on <arch>
bak/packages packages from last complete <major_version> run ↺
on <arch>

Basically, if the port shows up in packages, or it is in logs but not in errors, it built
fine. (The errors directories are what you get from the web page.)

Q: I added a new port. Do I need to add it to the INDEX?

A: No. The file can either be generated by running make index , or a pre-generated
version can be downloaded with make fetchindex .

Q: Are there any other files I am not allowed to touch?

A: Any file directly under ports/ , or any file under a subdirectory that starts with
an uppercase letter (Mk/, Tools/ , etc.). In particular, the Ports Management Team
is very protective of ports/Mk/bsd.port*.mk so do not commit changes to those
files unless you want to face their wra(i)th.

Q: What is the proper procedure for updating the checksum for a port's distfile when
the file changes without a version change?

A: When the checksum for a port's distfile is updated due to the author updating the
file without changing the port's revision, the commit message should include a
summary of the relevant diffs between the original and new distfile to ensure that
the distfile has not been corrupted or maliciously altered. If the current version of
the port has been in the ports tree for a while, a copy of the old distfile will usually
be available on the ftp servers; otherwise the author or maintainer should be con-
tacted to find out why the distfile has changed.

16. Issues Specific to Developers Who Are Not
Committers
A few people who have access to the FreeBSD machines do not have commit bits. For
instance, the project is willing to give access to the GNATS database to contributors who
have shown interest and dedication in working on Problem Reports.

Almost all of this document will apply to these developers as well (except things specific
to commits and the mailing list memberships that go with them). In particular, we rec-
ommend that you read:

Information About Google Analytics

58

• Administrative Details

• Conventions

Note
You should get your mentor to add you to the “Addition-
al Contributors” (doc/en_US.ISO8859-1/articles/contribu-
tors/contrib.additional.xml), if you are not already listed
there.

• Developer Relations

• SSH Quick-Start Guide

• The FreeBSD Committers' Big List of Rules

17. Information About Google Analytics
As of December 12, 2012, Google Analytics was enabled on the FreeBSD Project website to
collect anonymized usage statistics regarding usage of the site. The information collected
is valuable to the FreeBSD Documentation Project, in order to identify various problems
on the FreeBSD website.

17.1. Google Analytics General Policy

The FreeBSD Project takes visitor privacy very seriously. As such, the FreeBSD Project
website honors the “Do Not Track” header before fetching the tracking code from Google.
For more information, please see the FreeBSD Privacy Policy.

Google Analytics access is not arbitrarily allowed — access must be requested, voted on by
the Documentation Engineering Team <doceng@FreeBSD.org >, and explicitly granted.

Requests for Google Analytics data must include a specific purpose. For example, a valid
reason for requesting access would be “to see the most frequently used web browsers
when viewing FreeBSD web pages to ensure page rendering speeds are acceptable.”

Conversely, “to see what web browsers are most frequently used” (without stating why)
would be rejected.

All requests must include the timeframe for which the data would be required. For exam-
ple, it must be explicitly stated if the requested data would be needed for a timeframe
covering a span of 3 weeks, or if the request would be one-time only.

http://www.FreeBSD.org/privacy.html
mailto:doceng@FreeBSD.org

Committer's Guide

59

Any request for Google Analytics data without a clear, reasonable reason beneficial to the
FreeBSD Project will be rejected.

17.2. Data Available Through Google Analytics

A few examples of the types of Google Analytics data available include:

• Commonly used web browsers

• Page load times

• Site access by language

18. Perks of the Job
Unfortunately, there are not many perks involved with being a committer. Recognition
as a competent software engineer is probably the only thing that will be of benefit in the
long run. However, there are at least some perks:

Free 4-CD and DVD Sets
FreeBSD committers can get a free 4-CD or DVD set at conferences from FreeBSD
Mall, Inc.. The sets are no longer available as a subscription due to the high shipment
costs to countries outside the USA.

Freenode IRC Cloaks
FreeBSD developers may request a cloaked hostmask for their account on the Freen-
ode IRC network in the form of freebsd/developer/freefall name or freeb-
sd/developer/NickServ name. To request a cloak, send an email to Eitan Adler
<eadler@FreeBSD.org > with your requested hostmask and NickServ account name.

19. Miscellaneous Questions
Q: Why are trivial or cosmetic changes to files on a vendor branch a bad idea?

A: • From now on, every new vendor release of that file will need to have patches
merged in by hand.

• From now on, every new vendor release of that file will need to have patches
verified by hand.

Q: How do I add a new file to a branch?

A: To add a file onto a branch, simply checkout or update to the branch you want to add
to and then add the file using the add operation as you normally would. This works
fine for the doc and ports trees. The src tree uses SVN and requires more care

http://www.freebsdmall.com
http://www.freebsdmall.com
mailto:eadler@FreeBSD.org

Miscellaneous Questions

60

because of the mergeinfo properties. See section 1.4.6 of the Subversion Primer for
details. Refer to SubversionPrimer/Merging for details on how to perform an MFC.

Q: How do I access people.FreeBSD.org to put up personal or project information?

A: people.FreeBSD.org is the same as freefall.FreeBSD.org . Just create a
public_html directory. Anything you place in that directory will automatically be
visible under http://people.FreeBSD.org/ .

Q: Where are the mailing list archives stored?

A: The mailing lists are archived under /g/mail which will show up as /hub/g/mail
with pwd(1). This location is accessible from any machine on the FreeBSD cluster.

Q: I would like to mentor a new committer. What process do I need to follow?

A: See the New Account Creation Procedure document on the internal pages.

http://wiki.freebsd.org/SubversionPrimer
http://wiki.freebsd.org/SubversionPrimer/Merging
http://people.FreeBSD.org/
http://www.FreeBSD.org/cgi/man.cgi?query=pwd&sektion=1
http://www.freebsd.org/internal/new-account.html

	Committer's Guide
	Table of Contents
	1. Administrative Details
	2. Commit Bit Types
	2.1. Policy for doc/ Committer Activity in src/

	3. Subversion Primer
	3.1. Introduction
	3.2. Getting Started
	3.2.1. Direct Checkout
	3.2.2. Checkout from a Mirror
	3.2.3. RELENG_* Branches and General Layout
	3.2.4. FreeBSD Documentation Project Branches and Layout
	3.2.5. FreeBSD Ports Tree Branches and Layout

	3.3. Daily Use
	3.3.1. Help
	3.3.2. Checkout
	3.3.3. Anonymous Checkout
	3.3.4. Updating the Tree
	3.3.5. Status
	3.3.6. Editing and Committing
	3.3.7. Adding and Removing Files
	3.3.8. Copying and Moving Files
	3.3.9. Log and Annotate
	3.3.10. Diffs
	3.3.11. Reverting
	3.3.12. Conflicts

	3.4. Advanced Use
	3.4.1. Sparse Checkouts
	3.4.2. Direct Operation
	3.4.3. Merging with SVN
	3.4.3.1. About Merge Tracking
	3.4.3.2. Selecting the Source and Target
	3.4.3.3. Preparing the Merge Target
	3.4.3.4. Identifying Revisions
	3.4.3.5. Merging
	3.4.3.5.1. The Principles
	3.4.3.5.2. Practical Example
	3.4.3.5.3. Merging into the Kernel (sys/)

	3.4.3.6. Precautions Before Committing
	3.4.3.7. Committing

	3.4.4. Vendor Imports with SVN
	3.4.4.1. Preparing the Tree
	3.4.4.1.1. Flattening
	3.4.4.1.2. Cleaning Up
	3.4.4.1.3. Bootstrapping Merge History

	3.4.4.2. Importing New Sources
	3.4.4.2.1. Preparing the Vendor Sources
	3.4.4.2.2. Importing into the Vendor Tree
	3.4.4.2.3. Tagging

	3.4.4.3. Merging to Head
	3.4.4.4. Committing the Vendor Import
	3.4.4.5. From Scratch
	3.4.4.5.1. Importing into the Vendor Tree
	3.4.4.5.2. Merging to head

	3.4.5. Reverting a Commit
	3.4.6. Fixing Mistakes
	3.4.7. Setting up a svnsync Mirror
	3.4.8. Committing High-ASCII Data
	3.4.9. Maintaining a Project Branch

	3.5. Some Tips

	4. Conventions and Traditions
	4.1. Guidelines for Committers
	4.2. Guidelines for Everyone
	4.3. Mentors

	5. Commit Log Messages
	6. Preferred License for New Files
	7. Developer Relations
	8. If in doubt...
	9. GNATS
	9.1. Mirroring the GNATS Tree
	9.2. Useful Tools

	10. Who's Who
	11. SSH Quick-Start Guide
	12. Coverity® Availability for FreeBSD Committers
	13. The FreeBSD Committers' Big List of Rules
	13.1. Details
	13.2. Policy on Multiple Architectures
	13.3. Other Suggestions
	13.4. Deprecating Features

	14. Support for Multiple Architectures
	14.1. Statement of General Intent
	14.2. Tier 1: Fully Supported Architectures
	14.3. Tier 2: Developmental Architectures
	14.4. Tier 3: Experimental Architectures
	14.5. Tier 4: Unsupported Architectures
	14.6. Policy on Changing the Tier of an Architecture

	15. Ports Specific FAQ
	16. Issues Specific to Developers Who Are Not Committers
	17. Information About Google Analytics
	17.1. Google Analytics General Policy
	17.2. Data Available Through Google Analytics

	18. Perks of the Job
	19. Miscellaneous Questions

